Skip to main content
Log in

Grain Boundary Shortening in CuTl-1234 Superconductor by the Addition of ZnO Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The superconducting properties of Cu0.5Tl0.5 Ba2Ca3Cu4O12−x are studied after the inclusion of ZnO nanoparticles. The ZnO nanoparticles prepared by a sol-gel method were incorporated during the second stage of the synthesis of Cu0.5Tl0.5Ba2Ca3Cu4O12−x phase in y = 0, 3.0, 5.0, and 7.0 wt%. It is observed that the structure, the morphology, and the superconductivity properties are greatly influenced by the inclusion of ZnO nanoparticles. The lattice parameters of the orthorhombic phase of Cu0.5Tl0.5Ba2Ca3Cu4O12−x superconductor are decreased with the increase of x. Similarly, the grain morphology has been changed from needle-like to spherical grains. One of the major benefits of the inclusion of ZnO nanoparticles is the increase in critical temperature, critical magnetic fields, and critical current density as observed from the theoretical calculations of fluctuation-induced conductivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, T., Dvorak, G.J., Yu, C.C.: Solids containing spherical nano-inclusions with interface stresses: effective properties and thermal–mechanical connections. Intl. J. Solids Struct. 44, 941 (2007)

    Article  MATH  Google Scholar 

  2. Li, G., Yang, J., Ye, X., Fu, L., Luo, Y., Zhang, D., Liu, M., Li, W., Zhang, M.: Effect of TiC nanoinclusions on thermoelectric and mechanical performance of polycrystalline In4Se2.65. J. Am. Cermaic Soc. 98, 3817 (2015)

    Google Scholar 

  3. Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer 49, 3187–3204 (2008)

    Article  Google Scholar 

  4. Abd-Shukora, R., Kong, W.: Magnetic field dependent critical current density of Bi–Sr–Ca–Cu–O superconductor in bulk and tape form with addition of Fe3O4 magnetic nanoparticles. J. Appl. Phys. 105, 07E311 (2009)

    Article  Google Scholar 

  5. Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I.: Enhancing of magnetic flux pinning in YBa2Cu3O7/CuO granular composites. J. Appl. Phys. 118, 023907 (2015)

    Article  ADS  Google Scholar 

  6. Feldmann, D.M., Holesinger, T.G., Maiorov, B., Zhou, H., Foltyn, S.R., Coulter, J.Y., Apodoca, I.: 1000 A cm− 1 in a 2 μ m thick YBa2Cu3O7−x film with BaZrO3 and Y2O3 additions. Supercond. Sci. Technol. 23, 115016 (2010)

    Article  ADS  Google Scholar 

  7. Miura, M., Yoshida, Y., Ichino, Y., Takai, Y., Matsumoto, K., Ichinose, A., Horii, S., Mukaida, M.: Enhancement of flux-pinning in epitaxial Sm1−xBa2−xCu3Oy films by introduction of low-Tc nanoparticles Japanese. J. Appl. Phys. 45, L11–L13 (2006)

    Article  ADS  Google Scholar 

  8. Goswami, R., Holtz, R.L., Rupich, M.W., Zhang, W., Spanos, G.: Effect of Holmium additions on microstructures in YBa2Cu3O7−x. Acta Mater. 55, 6746–6753 (2007)

    Article  Google Scholar 

  9. Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., Sumption, M.: Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−x superconductor. Nature 430, 867 (2004)

    Article  ADS  Google Scholar 

  10. Mishra, N.C., Behera, D., Mohanty, T., Mohanta, D., Kanjilal, D., Mehta, G.K., Pinto, R.: Granularity controlled irradiation response of cuprate superconductors. Nucl. Inst. Methods Phys. Res. B 156, 30–34 (1999)

    Article  ADS  Google Scholar 

  11. Gazda, M., Kusz, B., Gackowska, J., Sadowski, W.: Conductivity and superconductivity in granular materials. Acta Phys. Polon. A 114, 143 (2008)

    Article  ADS  Google Scholar 

  12. Karzel, H., Potzel, W., Köfferlein, M., Schiessl, W., Steiner, M., Hiller, U., Kalvius, G.M., Mitchell, D.W., Das, T.P., Blaha, P., Schwarz, K., Pasternak, M.P.: Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Phys. Rev. B 53, 11425 (1996)

    Article  ADS  Google Scholar 

  13. Xiao, G., Bakhshai, A., Cieplak, M.Z., Tesanovic, Z., Chien, C.L.: Correlation between superconductivity and normal-state properties in the La1.85Sr0.15(Cu1−xZnx)O4 system. Phys. Rev. Correl. Between B 39, 315 (1989)

    Article  ADS  Google Scholar 

  14. Ghosh, A.K., Basu, A.N.: Fluctuation-induced conductivity in quenched and furnace-cooled Bi2Sr2CaCu2O8 + δ : Aslamazov-Larkin or short-wavelength fluctuations. Phys. Rev. B 59, 11193 (1999)

    Article  ADS  Google Scholar 

  15. Sato, T., Nakane, H., Mori, N., Yoshizawa, S.: Physica C 344, 244 (2003)

    Google Scholar 

  16. Ghosh, A.K., Bandyopadhyay, S.K., Barat, P., Sen, P., Basu, A.N.: Fluctuation-induced conductivity of polycrystalline Y1−xCaxBa2Cu3O7−δ superconductors. Physica C 264, 255 (1996)

    Article  ADS  Google Scholar 

  17. Kaur, M., Srinibasan, R., Mehta, G.K., Kanjilal, D., Pinto, R., Ogale, S.B., Mohan, S., Ganesan, V.: Effect of disorder on the exponent in the coherence region in high temperature superconductors. Physica C 443, 61 (2006)

    Article  ADS  Google Scholar 

  18. Lawrence, W.E., Doniach, S.: Proceedings of the twelfth international conference on low temperature physics. In: Kanda, E. (Ed.), p. 361, Keigaku (1971)

  19. Passos, C.A.C., Orlando, M.T.D., Passamai, J.L. Jr., de Mello, E.V.L., Correa, H.P.S., Martinez, L.G.: Resistivity study of the pseudogap phase for (Hg,Re)-1223 superconductors. Phys. Rev. B 74, 094514 (2006)

    Article  ADS  Google Scholar 

  20. Ghorbani, S.R., Rahmati Tarki, M.: Fluctuation conductivity of RE1 − 2x Ca x M x Ba2Cu3O7−δ (RE = Nd, Y and M = Pr, Th) superconductors. J. Supercond. Nov. Magn. 27, 749 (2014)

    Article  Google Scholar 

  21. Mumtaz, M., Zubair, M., Khan, N.A., Nadeem, K.: Infrared absorption spectroscopy and fluctuations induced conductivity (FIC) analysis of Be-doped TlBa2Ca2Cu3O10−δ superconductor. Ceram. Int. 40, 6655 (2014)

    Article  Google Scholar 

  22. Jabbar, A., Qasim, I., Mumtaz, M., Zubair, M., Nadeem, K., Khurram, A.A.: Activation energy and excess conductivity analysis of (Ag)(x)/CuTl-1223 nano-superconductor composites. J. Appl Activation Phys. 115, 203904 (2014)

    Article  ADS  Google Scholar 

  23. Abu Aly, A.I., Ibrahim, I.H., Awad, R.A., El-Harizy, A.: Stabilization of Tl-1223 phase by arsenic substitution. J. Supercond. Nov. Magn. 23, 1325 (2010)

    Article  Google Scholar 

  24. Rojas Sarmiento, M.P., Uribe Laverde, M.A., Vera Lopez, E., Landinez Tellez, D.A., Roa-Rojas, J.: Conductivity fluctuation and superconducting parameters of the YBa2Cu3−x (PO4)x O7−δ material. Physica B 398, 360 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khurram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzaffar, M.U., Safeer, S.H., Khan, N.A. et al. Grain Boundary Shortening in CuTl-1234 Superconductor by the Addition of ZnO Nanoparticles. J Supercond Nov Magn 31, 1669–1675 (2018). https://doi.org/10.1007/s10948-017-4385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4385-x

Keywords

Navigation