Skip to main content
Log in

Strain-Dependent Electronic and Magnetic of Mg-Doped Monolayer of WS2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Magnetic properties of Mg-doped WS2 monolayer under strain are investigated by ab initio methods. Without strain, the Mg-doped WS2 monolayer is a magnetic nano material and the total magnetic moment is about 1.68 μ B. We applied strain to Mg-doped WS2 monolayer from −10 to 10%. The system changes from semiconductor to half-metallic material from 3 to 10% strain. The magnetic moment gets a maximum value of 2.07 μ B at −3% compressive strain. However, the magnetic moment of system decreases to zero sharply when compressive strain arrived at −5%. The coupling among the 3s states of Mg, 5d states of W, and 3p states of S is responsible for the strong strain effect on the magnetic properties. Our studies predict Mg-doped WS2 monolayer under strain to be candidates for application in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. Zhang, Y.B., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  ADS  Google Scholar 

  3. Sun, C.Q.: Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2, 1930–1938 (2010)

    Article  ADS  Google Scholar 

  4. Du, X.J., Chen, Z., Zhang, J., Ning, Z.R., Fan, X.L.: First-principles study on armchair AlN nanoribbons with different edge terminations. Superlattice. Micro. 67, 40–46 (2014)

    Article  ADS  Google Scholar 

  5. Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3505 (2008)

    Article  ADS  Google Scholar 

  6. Ma, Y.D., Dai, Y., Wei, W., Niu, C.W., Yu, L., Huang, B.B.: First-principles study of the graphene@MoSeMa2 heterobilayers. J. Phys. Chem. C 115, 20237–20241 (2011)

    Article  Google Scholar 

  7. Li, X.R., Dai, Y., Ma, Y.D., Huang, B.B.: Electronic and magnetic properties of honeycomb transition metal monolayers: First-principles insights. Phys. Chem. Chem. Phys. 16, 13383–13389 (2014)

    Article  Google Scholar 

  8. Ma, Y.D., Dai, Y., Guo, M., Niu, C.W., Lu, J.B., Huang, B.B.: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSeM2. Phys. Chem. Chem. Phys. 13, 15546–15553 (2011)

    Article  Google Scholar 

  9. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)

    Article  ADS  Google Scholar 

  10. Braga, D., Lezama, I.G., Berger, H., Morpurgo, A.: Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 12, 5218–5223 (2012)

    Article  ADS  Google Scholar 

  11. Li, Y., Wu, D., Zhou, Z., Cabrera, C.R., Chen, Z.: Enhanced Li adsorption and diffusion on MoSL2 zigzag nanoribbons by edge effects: a computational study. J. Phys. Chem. Lett. 3, 2221–2227 (2012)

    Article  Google Scholar 

  12. Li, Y., Zhou, Z., Zhang, S., Chen, Z.: MoSL 2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130, 16739–16744 (2008)

    Article  Google Scholar 

  13. Jing, Y., Zhou, Z., Cabrera, C.R., Chen, Z.: Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem A 2, 12104–12122 (2014)

    Article  Google Scholar 

  14. Tang, Q., Zhou, Z., Chen, Z.: Innovation and discovery of graphene-like materials via density-functional theory computations. WIREs Comput. Mol. Sci. 5, 360–379 (2015)

    Article  Google Scholar 

  15. Hashmi, A., Hong, J.: Transition metal doped phosphorene: first-principles study. J. Phys. Chem. C 119, 9198–9206 (2015)

    Article  Google Scholar 

  16. Gil, C.J., Pham, A., Yu, A., Li, S.: An ab initio study of transition metals doped with WSe2 for long-range room temperature ferromagnetism in two-dimensional transition metal dichalcogenide. J. Phys. Condens. Matter 26, 306004–306011 (2014)

    Article  Google Scholar 

  17. Ramasubramaniam, A., Naveh, D.: Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor. Phys. Rev. B 87, 195201–195206 (2013)

    Article  ADS  Google Scholar 

  18. Sliney, H.E.: Solid lubricant materials for high temperatures: A review. Tribol. Int. 15, 303–315 (1982)

    Article  Google Scholar 

  19. Yang, Y., Fan, X.L., Zhang, H.: Effect of strain on the magnetic states of transitionmetal atoms doped monolayer WS2. Comput. Mater. Sci. 117, 354–360 (2016)

    Article  Google Scholar 

  20. Zhang, Y.F., Zhang, Y., Liu, F.: Formation of hydrogenated graphene nanoripples by strain engineering and directed surface self-assembly. Phys. Rev. B 83, 041403–041410 (2011)

    ADS  Google Scholar 

  21. Liu, Z., Wu, J., Duan, W., Lagally, M.G., Liu, F.: Electronic phase diagram of single-element silicon “strain” superlattices. Phys. Rev. Lett. 105, 016802 (2010)

    Article  ADS  Google Scholar 

  22. Liu, F., Rugheimer, P., Mateeva, E., Savage, D.E., Lagally, M.G.: Nanomechanics—response of a strained semiconductor structure. Nature 416, 498 (2002)

    Article  ADS  Google Scholar 

  23. Ming, W.M., Wang, Z.F., Zhou, M., Yoon, M., Liu, F.: Formation of ideal rashba states on layered semiconductor surfaces steered by strain engineering. Nano Lett. 16, 404–409 (2016)

    Article  ADS  Google Scholar 

  24. Shi, H.L., Pan, H., Zhang, Y.W., Yakobson, B.I.: Strong ferromagnetism in hydrogenated monolayer MoS2 tuned by strain. Phys.Rev. B 88, 205305 (2013)

    Article  ADS  Google Scholar 

  25. Ma, Y.D., Dai, Y., Guo, M., Niu, C.W., Zhu, Y.T., Huang, B.B.: Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1702 (2012)

    Article  Google Scholar 

  26. Kou, L.Z., Tang, C., Guo, W.L., Chen, C.F.: Tunable magnetism in strained graphene with topological line defect. ACS Nano 5, 1012–1019 (2012)

    Article  Google Scholar 

  27. Zhou, Y.G., Su, Q.L., Wang, Z.G., Deng, H.Q., Zu, X.T.: Controlling magnetism of MoSZ2 sheets by embedding transition-metal atoms and applying strain. Phys. Chem. Chem. Phys. 15, 18464–18470 (2013)

    Article  Google Scholar 

  28. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  29. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  30. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  ADS  Google Scholar 

  31. Mishra, R., Zhou, W., Pennycook, S.J., Pantelides, S.T., Idrobo, J.C.: Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides. Phys. Rev. B 88, 144409–144413 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work is supported by the Shanghai Committee of Science and Technology, China (Grant No. ZHT. K1507). We also thank the National Supercomputer Center in Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Yin, H.H. & Chu, J.H. Strain-Dependent Electronic and Magnetic of Mg-Doped Monolayer of WS2 . J Supercond Nov Magn 31, 1637–1642 (2018). https://doi.org/10.1007/s10948-017-4380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4380-2

Keywords

Navigation