First-Principles Study of Pressure Dependence of Optical Spectra of MnS

  • Abdelghani Khaldi
  • Nadir Bouarissa
  • Laurent Tabourot
Original Paper


MnS is a semiconductor material that can be used in solar cell coatings as window/buffer material and in many other applications. The present contribution deals with the optical properties of MnS in the zinc-blende structure using ab initio calculations within the generalized gradient approximation. Features such as dielectric function, refractive index, reflectivity, optical absorption, conductivity, and electron loss function spectra have been reported and their pressure dependence has been examined and discussed. The information gathered from the present study can be useful for photovoltaic applications.


Optical properties MnS Pressure Ab initio 


  1. 1.
    Spaldin, N.A.: Magnetic Materials: Fundamentals and Applications, 2nd edn. Cambridge University Press, Cambridge (2011). and references thereinGoogle Scholar
  2. 2.
    Kavci, O., Cabuk, S.: First principles study of structural stability, elastic and dynamical properties of MnS. Comput. Mater. Sci. 95, 99–105 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhou, W., Wu, S., Li, S.: Relative stability, electronic structure, and magnetism of MnSe in rocksalt and zinc-blende structures. J. Magn. Magn. Mater. 395, 166–172 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Khaldi, A., Ghodbane, H., Bouarissa, N., Daoud, S., Rouabah, Z., Tabourot, L.: Zinc-blende MnTe under pressure: Structural, mechanical, and optical properties from ab initio calculation. J. Supercond. Nov. Magn. 30, 1533–1538 (2017)CrossRefGoogle Scholar
  5. 5.
    Zhang, X.V., Martin, S.T., Friend, C.M., Schoonen, M.A.A., Holland, H.D.: Mineral-assisted pathways in prebiotic synthesis: photoelectrochemical reduction of carbon (+ IV) by manganese sulfide. J. Am. Chem. Soc. 126, 11247–11253 (2004)CrossRefGoogle Scholar
  6. 6.
    Lee, S.M., Lee, J.-K., Kang, Y.C.: Electrochemical properties of hollow-structured MnS-carbon nanocomposite powders prepared by a one-pot spray pyrolysis process. Chem. Asian J. 9, 590–595 (2014)CrossRefGoogle Scholar
  7. 7.
    Ha, D.-H., Ly, T., Caron, J.M., Zhang, H., Fritz, K.E., Robinson, R.D.: A general method for high-performance Li-ion battery electrodes from colloidal nanoparticles without the introduction of binders or conductive-carbon additives: The cases of MnS, Cu2−x S, and Ge. ACS Appl. Mater. Interfaces. 7, 25053–25060 (2015)CrossRefGoogle Scholar
  8. 8.
    Tang, Y., Chen, T., Yu, S.: Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals and their primary application in supercapacitors with high performances. Chem. Commun. 51, 9018–9021 (2015)CrossRefGoogle Scholar
  9. 9.
    Chen, T., Tang, Y., Qiao, Y., Liu, Z., Guo, W., Song, J., Mu, S., Yu, S., Zhao, Y., Gao, F.: All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci. Rep. 6, 23289 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Holzapfel, W.B.: Physics of solids under strong compression. Rep. Prog. Phys. 59, 29–90 (1996). and references thereinADSCrossRefGoogle Scholar
  11. 11.
    Badding, J.V.: High-pressure synthesis, characterization, and tuning of solid state materials. Annu. Rev. Mater. Sci. 28, 631–658 (1998). and reference thereinADSCrossRefGoogle Scholar
  12. 12.
    Bouarissa, N.: the effect of hydrostatic pressure on the electronic and optical properties of InP. Solide-state Electron. 44, 2193–2198 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Benmakhlouf, F., Bouarissa, N.: Pressure dependence of opto-electronic properties in ZnSxSe1−x. Intern. J. Mod. Phys. B 20, 4807–4820 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Liu, Z.X., Goñi, A.R., Syassen, K., Siegle, H., Thomsen, C., Schöttker, B., As, D.J., Schikora, D.: Pressure and temperature effects on optical transitions in cubic GaN. J. Appl. Phys. 86, 929–934 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Saib, S., Bouarissa, N., Rodríguez-Hernández, P., Muñoz, A.: First-principles study of high-pressure phonon dispersions of wurtzite, zinc-blende, and rocksalt AlN. J. App. Phys. 103, 013506–1-013506-8 (2008)Google Scholar
  16. 16.
    Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., Payne, M.C.: First principles methods using CASTEP. Z. Krist. 220, 567–570 (2005)Google Scholar
  17. 17.
    Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B13, 5188–5192 (1976)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Fischer, T.H., Almlöf, J.: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992)CrossRefGoogle Scholar
  21. 21.
    Khan, M.A., Bouarissa, N.: Optical and energy-loss spectra of ZnS from ab initio molecular dynamics simulation: temperature effect. Optik 124, 5095–5098 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Ozaki, S., Adachi, S.: Optical constants of ZnSxSe1−x ternary alloys. J. Appl. Phys. 75, 7470–7475 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Suzuki, K.I., Adachi, S.: Optical constants of CdxZn 1−x Se ternary alloys. J. Appl. Phys. 83, 1018–1022 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Bouarissa, N.: Energy gaps and refractive indices of AlxGa1−x As. Mater. Chem Phys. 72, 387–394 (2001)CrossRefGoogle Scholar
  25. 25.
    Ravindra, N.M., Ganapathy, P., Choi, J.: Energy gap-refractive index relations in semiconductors—an overview. Infrared Phys. Technol. 50, 21–29 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors, Physics and Materials Properties. Spinger-Verlag, Berlin (1996)CrossRefzbMATHGoogle Scholar
  27. 27.
    Gueddim, A., Zerroug, S., Bouarissa, N.: Optical characteristics of ZnTe1−xOxalloys from first-principles calculations. J. Lumin. 135, 243–247 (2013)CrossRefGoogle Scholar
  28. 28.
    Bouarissa, N., Gueddim, A., Siddiqui, S.A., Boucenna, M., Al-Hajry, A.: First-principles study of dielectric properties and optical conductivity of Cd1−xMnxTe. Superlatt. Microstruct. 72, 319–324 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Abdelghani Khaldi
    • 1
  • Nadir Bouarissa
    • 2
  • Laurent Tabourot
    • 3
  1. 1.Laboratory of Materials and Electronic Systems (LMSE)University of Mohamed El Bachir El IbrahimiBordj Bou ArreridjAlgeria
  2. 2.Laboratory of Materials Physics and its ApplicationsUniversity of M’silaM’silaAlgeria
  3. 3.Université Savoie Mont Blanc, SYMMEAnnecyFrance

Personalised recommendations