Skip to main content
Log in

Transition of Magnetic Characteristics from Paramagnetic State to Ferromagnetic Phase in Ce1−xNixO2 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nowadays, oxide-based diluted magnetic semiconductor nanoparticles are the most reliable compounds, wherein they accommodate both spin as well as charge of the electron in single domain, means most preferable for the fabrication of spintronic devices. In this view, we report on new Ce1−xNixO2 (x = 0.00, 0.02, 0.04, 0.06, and 0.08) nanoparticles prepared by precipitation method via polyethylene glycol as a surfactant. XRD analysis revealed that all the synthesized nanoparticles were crystallized in distinct FCC fluorite structure as that of CeO2 host lattice. Transmission electron microscopy analysis confirmed that all the synthesized samples were in spherical shape with average particle size of 8–10 nm, which is well concord with the grain size estimated from the Scherrer formula. The vibrating sample magnetometer evaluations suggested that pristine host lattice shows signals of paramagnetism; meanwhile, Ni substitution CeO2 nanoparticles exhibits strong ferromagnetism at room temperature. Particularly, 4% Ni-doped CeO2 samples shows enhanced ferromagnetism and which is suppressed with raising dopant concentration. The perceived magnetization with respect to the Ni dopant concentration is well anticipated by F-center exchange mechanism. We expect that the observations in this research suggest suitable path for preparing of various oxide-based diluted magnetic semiconductor nanoparticles and their applications in fabrication of spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sato, K., Katayama-Yoshida, H.: Hyperfine Interact. 136, 737–742 (2001)

    Article  ADS  Google Scholar 

  2. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488–1495 (2001)

    Article  ADS  Google Scholar 

  3. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Nat. Mater. 4, 173–179 (2005)

    Article  ADS  Google Scholar 

  4. Prinz, G.A.: Science 282, 1660–1663 (1998)

    Article  Google Scholar 

  5. Ohno, H.: Science 281, 951–956 (1998)

    Article  ADS  Google Scholar 

  6. Zhao, L., Zhang, B., Pang, Q., Yang, S., Xixiang, Z., Ge, W.: vol. 89 (2006)

  7. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki. M., Ahmet. P., Chikyow, T., Koshihara, S.Y., Koinuma, H.: Science 291, 854–6 (2001)

    Article  ADS  Google Scholar 

  8. Ueda. K., Tabata, H., Kawai, T.: Appl. Phys. Lett. 79, 988–990 (2001)

    Article  ADS  Google Scholar 

  9. Fitzgerald, C.B., Venkatesan, M., Douvalis, A.P., Huber, S., Coey, J.M.D., Bakas, T.: J. Appl. Phys. 95, 7390–7392 (2004)

    Article  ADS  Google Scholar 

  10. Saini, H.S., Singh, M., Reshak, A.H., Kashyap, M.K.: Science 74, 114–118 (2013)

    Google Scholar 

  11. Anupriya, K., Vivek, E., Subramanian, B.: J. Alloys Compd. 590, 406–410 (2014)

    Article  Google Scholar 

  12. Yu, L., Xi, J.: Int. J. Hydrog. Energy 37, 15938–15947 (2012)

    Article  Google Scholar 

  13. Zhang, X., Long, E., Li, Y., Guo, J., Zhang, L., Gong, M., Wang, M., Chen, Y.: J. Nat. Gas Chem. 18, 139–144 (2009)

    Article  Google Scholar 

  14. Feng, T., Wang, X., Feng, G.: Mater. Lett. 100, 36–39 (2013)

    Article  Google Scholar 

  15. Prestgard, M.C., Siegel, G., Ma, Q., Tiwari, A.: Appl. Phys. Lett. 103, 102409–4 (2013)

    Article  ADS  Google Scholar 

  16. Parveen, I.M., Asvini, V., Saravanan, G., Ravichandran, K., KalaiSelvi, D.: Ionics 23, 1285–1291 (2017)

    Article  Google Scholar 

  17. Thurber, A., Reddy, K.M., Shutthanandan, V., Engelhard, M.H., Wang, C., Hays, J., Punnoose, A.: Phys. Rev. B 76, 165206–8 (2007)

    Article  ADS  Google Scholar 

  18. Murugan, R., Vijayaprasath, G., Mahalingam, T., Ravi, G.: Mater. Lett. 162, 71–74 (2016)

    Article  Google Scholar 

  19. Abbas, F., Jan, T., Iqbal, J., Ahmad, I., Haider Naqvi, M.S., Malik, M.: Appl. Surf. Sci. 357, 931–936 (2015)

    Article  ADS  Google Scholar 

  20. Devaraju, M.K., Shu, Y., Tsugio, S.: Cryst. Eng. Comm. 13, 741–746 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors (K. Subramanyam and N. Sreelekha) are grateful to the RAGHU engineering college, Visakhapatnam, Andhra Pradesh, India, for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Subramanyam or R. P. Vijayalakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhav, P.L., Teja, K.R., Sreelekha, N. et al. Transition of Magnetic Characteristics from Paramagnetic State to Ferromagnetic Phase in Ce1−xNixO2 Nanoparticles. J Supercond Nov Magn 31, 1631–1636 (2018). https://doi.org/10.1007/s10948-017-4375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4375-z

Keywords

Navigation