Transition of Magnetic Characteristics from Paramagnetic State to Ferromagnetic Phase in Ce1−xNixO2 Nanoparticles

  • Peddareddygari Lalith Madhav
  • K. Ravi Teja
  • N. Sreelekha
  • D. Amaranatha Reddy
  • G. Murali
  • M. Ramanadha
  • K. Subramanyam
  • R. P. Vijayalakshmi
Original Paper


Nowadays, oxide-based diluted magnetic semiconductor nanoparticles are the most reliable compounds, wherein they accommodate both spin as well as charge of the electron in single domain, means most preferable for the fabrication of spintronic devices. In this view, we report on new Ce1−xNixO2 (x = 0.00, 0.02, 0.04, 0.06, and 0.08) nanoparticles prepared by precipitation method via polyethylene glycol as a surfactant. XRD analysis revealed that all the synthesized nanoparticles were crystallized in distinct FCC fluorite structure as that of CeO2 host lattice. Transmission electron microscopy analysis confirmed that all the synthesized samples were in spherical shape with average particle size of 8–10 nm, which is well concord with the grain size estimated from the Scherrer formula. The vibrating sample magnetometer evaluations suggested that pristine host lattice shows signals of paramagnetism; meanwhile, Ni substitution CeO2 nanoparticles exhibits strong ferromagnetism at room temperature. Particularly, 4% Ni-doped CeO2 samples shows enhanced ferromagnetism and which is suppressed with raising dopant concentration. The perceived magnetization with respect to the Ni dopant concentration is well anticipated by F-center exchange mechanism. We expect that the observations in this research suggest suitable path for preparing of various oxide-based diluted magnetic semiconductor nanoparticles and their applications in fabrication of spintronic devices.


Ni-doped CeO2 Chemical synthesis RTFM F-center exchange mechanism 



The authors (K. Subramanyam and N. Sreelekha) are grateful to the RAGHU engineering college, Visakhapatnam, Andhra Pradesh, India, for providing financial assistance.


  1. 1.
    Sato, K., Katayama-Yoshida, H.: Hyperfine Interact. 136, 737–742 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488–1495 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Nat. Mater. 4, 173–179 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Prinz, G.A.: Science 282, 1660–1663 (1998)CrossRefGoogle Scholar
  5. 5.
    Ohno, H.: Science 281, 951–956 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Zhao, L., Zhang, B., Pang, Q., Yang, S., Xixiang, Z., Ge, W.: vol. 89 (2006)Google Scholar
  7. 7.
    Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki. M., Ahmet. P., Chikyow, T., Koshihara, S.Y., Koinuma, H.: Science 291, 854–6 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Ueda. K., Tabata, H., Kawai, T.: Appl. Phys. Lett. 79, 988–990 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Fitzgerald, C.B., Venkatesan, M., Douvalis, A.P., Huber, S., Coey, J.M.D., Bakas, T.: J. Appl. Phys. 95, 7390–7392 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Saini, H.S., Singh, M., Reshak, A.H., Kashyap, M.K.: Science 74, 114–118 (2013)Google Scholar
  11. 11.
    Anupriya, K., Vivek, E., Subramanian, B.: J. Alloys Compd. 590, 406–410 (2014)CrossRefGoogle Scholar
  12. 12.
    Yu, L., Xi, J.: Int. J. Hydrog. Energy 37, 15938–15947 (2012)CrossRefGoogle Scholar
  13. 13.
    Zhang, X., Long, E., Li, Y., Guo, J., Zhang, L., Gong, M., Wang, M., Chen, Y.: J. Nat. Gas Chem. 18, 139–144 (2009)CrossRefGoogle Scholar
  14. 14.
    Feng, T., Wang, X., Feng, G.: Mater. Lett. 100, 36–39 (2013)CrossRefGoogle Scholar
  15. 15.
    Prestgard, M.C., Siegel, G., Ma, Q., Tiwari, A.: Appl. Phys. Lett. 103, 102409–4 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Parveen, I.M., Asvini, V., Saravanan, G., Ravichandran, K., KalaiSelvi, D.: Ionics 23, 1285–1291 (2017)CrossRefGoogle Scholar
  17. 17.
    Thurber, A., Reddy, K.M., Shutthanandan, V., Engelhard, M.H., Wang, C., Hays, J., Punnoose, A.: Phys. Rev. B 76, 165206–8 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Murugan, R., Vijayaprasath, G., Mahalingam, T., Ravi, G.: Mater. Lett. 162, 71–74 (2016)CrossRefGoogle Scholar
  19. 19.
    Abbas, F., Jan, T., Iqbal, J., Ahmad, I., Haider Naqvi, M.S., Malik, M.: Appl. Surf. Sci. 357, 931–936 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Devaraju, M.K., Shu, Y., Tsugio, S.: Cryst. Eng. Comm. 13, 741–746 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Peddareddygari Lalith Madhav
    • 1
  • K. Ravi Teja
    • 2
  • N. Sreelekha
    • 3
    • 4
  • D. Amaranatha Reddy
    • 5
  • G. Murali
    • 6
  • M. Ramanadha
    • 4
  • K. Subramanyam
    • 3
  • R. P. Vijayalakshmi
    • 2
  1. 1.Department of Mechanical EngineeringNational Institute of TechnologyWarangalIndia
  2. 2.Department of Mechanical EngineeringRaghu Engineering CollegeVisakhapatnamIndia
  3. 3.Department of PhysicsRaghu Engineering CollegeVisakhapatnamIndia
  4. 4.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  5. 5.Department of Chemistry and Chemical Institute for Functional MaterialsPusan National UniversityBusanRepublic of Korea
  6. 6.Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and TechnologyChonbuk National UniversityJeonjuKorea

Personalised recommendations