Skip to main content
Log in

Influence of Thickness on Structural and Magnetic Properties of Co-rich Bi10Co16O38 Sillenite Thin Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effect of thickness on structural and magnetic properties of Co-rich Bi10Co16O38 (BCO) sillenite thin films is investigated systematically. BCO thin films are deposited using a simultaneous evaporation of Bi2O3, Co targets with RF-DC magnetron sputtering along with post-annealing procedure. The magnetic studies reveal an ordered magnetic nature below film thicknesses of 100 nm. Further, the temperature-dependent and field-dependent magnetic data is evaluated to comprehend the microstructure impact on to the magnetic nature of Co-rich sillenite thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ballman, A.A.: The growth and properties of piezoletric bismuth germanium oxide. J. Cryst. Growth 1, 37–40 (1967). https://doi.org/10.1016/0022-0248(67)90004-8

    Article  ADS  Google Scholar 

  2. Ballman, A.A., Brown, H., Tien, P.K., Martin, R.J.: The growth of single crystalline wave guiding thin films of piezoelectric sillenites. J. Cryst. Growth 20, 251–255 (1973). https://doi.org/10.1016/0022-0248(73)90013-4

    Article  ADS  Google Scholar 

  3. Frejlich, J., Montenegro, R., dos Santos, T.O., Carvalho, J.F.: Characterization of photorefractive undoped and doped sillenite crystals using holographic and photoconductivity techniques. J. Opt. A: Pure Appl. Opt 10, 104005 (2008). https://doi.org/10.1088/1464-4258/10/10/104005

    Article  ADS  Google Scholar 

  4. Pedersen, H.C., Webb, D.J., Johansen, P.M.: Fundamental characteristics of space-charge waves in photorefractive sillenite crystals. J. Opt. Soc. Am. B 15, 2573–2580 (1998). https://doi.org/10.1364/JOSAB.15.002573

    Article  ADS  Google Scholar 

  5. Jerez, V., De Oliveira, I., Frejlich, J.: Optical recording mechanisms in undoped titanosillenite crystals. J. Appl. Phys. 109, 024901 (2011). https://doi.org/10.1063/1.3533421

    Article  ADS  Google Scholar 

  6. Tanguay, A.R., Mroczkowski, S., Barker, R.C.: The Czochralski growth of optical quality bismuth silicon oxide (Bi12SiO20). J. Cryst. Growth 42, 431–434 (1977). https://doi.org/10.1016/0022-0248(77)90227-5

    Article  ADS  Google Scholar 

  7. Kargin, Y.F., Egorysheva, A.V., Volkov, V.V., Frolova, M.N., Borodin, M.V., Shandarov, S.M., Shandarov, V.M., Kip, D.: The growth of photorefractive planar BTO/BSO and BTO/BGO waveguide. J. Cryst. Growth 275, e2403—e2407 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.349

    Google Scholar 

  8. Brito, I.V., Gesualdi, M.R.R., Ricardo, J., Palácios, F., Muramatsu, M., Valin, J.L.: Photorefractive digital holographic microscopy applied in microstructures analysis. Opt. Commun. 286, 103–110 (2013). https://doi.org/10.1016/j.optcom.2012.08.085

    Article  ADS  Google Scholar 

  9. Ricardo, J., Muramatsu, M., Palácios, F., Gesualdi, M.R.R., Valin, J.L., Prieto Lopez, M.A.: Digital holographic microscopy with photorefractive sillenite Bi12SiO20 crystals. Opt. Lasers Eng. 51, 949–952 (2013). https://doi.org/10.1016/j.optlaseng.2012.12.015

    Article  Google Scholar 

  10. de Oliveira, I., Capovilla, D.A., Moura, A.L., Timóteo, V.S., Carvalho, J.F., Frejlich, J.: Nonlinear photovoltaic effect in sillenite photorefractive crystals. Opt. Mater. 66, 72–78 (2017). https://doi.org/10.1016/j.optmat.2017.01.028

    Article  ADS  Google Scholar 

  11. Carvalho, J.F.: Optical and magnetic characterization of pure and vanadium-doped Bi12TiO20 sillenite crystals. Opt. Mater. 13, 333–338 (1999). https://doi.org/10.1016/S0925-3467(99)00077-4

    Article  ADS  Google Scholar 

  12. Sochava, S.L., Buse, K., Krätzig, E.: Photoinduced Hall-current measurements in photorefractive sillenites. Phys. Rev. B 51, 4684–4686 (1995). https://doi.org/10.1103/PhysRevB.51.4684

    Article  ADS  Google Scholar 

  13. Ahmad, I., Marinova, V., Goovaerts, E.: High-frequency electron paramagnetic resonance of the hole-trapped antisite bismuth center in photorefractive bismuth sillenite crystals. Phys. Rev. B 79, 2–5 (2009). https://doi.org/10.1103/PhysRevB.79.033107

    Article  Google Scholar 

  14. Reyher, H.-J., Ruschke, J., Mersch, F.: Photoinduced linear dichroism in sillenite crystals and in diamond. Radiat. Eff. Defects Solids 136, 129–132 (1995). https://doi.org/10.1080/10420159508218807

    Article  Google Scholar 

  15. Briat, B., Panchenko, T. V, Rjeily, H.B., Hamri, A.: Optical and magneto-optical characterization of the Al acceptor levels in Bi12SiO20. J. Opt. Soc. Am. B 15, 2147–2153 (1998). https://doi.org/10.1364/JOSAB.15.002147

    Article  ADS  Google Scholar 

  16. Tassev, V., Diankov, G., Gospodinov, M.: Doped sillenite crystals applicable for fiber-optic magnetic sensors. Opt. Mater. 6, 347–351 (1996). https://doi.org/10.1016/S0925-3467(96)00058-4

    Article  ADS  Google Scholar 

  17. Valant, M., Suvorov, D.: A stoichiometric model for sillenites. Chem. Mater 14, 3471–3476 (2002). https://doi.org/10.1021/cm021173l

    Article  Google Scholar 

  18. Rao, R., Garg, A.B., Sakuntala, T.: High pressure stability of bismuth sillenite: a Raman spectroscopic and x-ray diffraction study. J. Appl. Phys. 108, 083508 (2010). https://doi.org/10.1063/1.3496659

    Article  ADS  Google Scholar 

  19. Scurti, C.A., Auvray, N., Lufaso, M.W., Takeda, S., Kohno, H., Arenas, D.J., Scurti, C.A., Auvray, N., Lufaso, M.W., Takeda, S., Kohno, H., Arenas, D.J.: Electron diffraction study of the sillenites Bi12SiO20, Bi25FeO39 and Bi25InO39: evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites. AIP Adv. 87125, 0–10 (2014). https://doi.org/10.1063/1.4893341

    Google Scholar 

  20. Gopalakrishnan, J.: Synthesis and structure of some interesting oxides of bismuth. J. Chem. Sci. 96, 449 (1986). https://doi.org/10.1007/BF02936297

    Article  Google Scholar 

  21. Cai, M.-Q., Liu, J.-C., Yang, G.-W., Cao, Y.-L., Tan, X., Chen, X.-Y., Wang, Y.-G., Wang, L.-L., Hu, W.-Y.: First-principles study of structural, electronic, and multiferroic properties in BiCoO3. J. Chem. Phys. 126, 154708 (2007). https://doi.org/10.1063/1.2483798

    Article  ADS  Google Scholar 

  22. Uratani, Y., Shishidou, T., Ishii, F., Oguchi, T.: First-principles predictions of giant electric polarization. Jpn. J. Appl. Phys. 44, 7130–7133 (2005). https://doi.org/10.1143/JJAP.44.7130

    Article  ADS  Google Scholar 

  23. Chen, X.-Y., Tian, R.-Y., Wu, J.-M., Zhao, Y.-J., Ding, H.-C., Duan, C.-G.: Fe, Mn, and Cr doped BiCoO3 for magnetoelectric application: a first-principles study. J. Phys. Condens. Matter. 23, 326005 (2011). https://doi.org/10.1088/0953-8984/23/32/326005

    Article  Google Scholar 

  24. Dong, X.L., Xu, M.X., Hong, K.Q., Yuan, X.P.: First-principles investigation of magnetism and ferroelectricity in Ni-doped BiCoO3. Phys. status solidi. 250, 1864–1869 (2013). https://doi.org/10.1002/pssb.201248536

    Article  Google Scholar 

  25. Sun, B., Li, Q., Liu, Y., Chen, P.: Resistive switching of multiferroic BiCoO3 nanoflowers. Funct. Mater. Lett. 8, 1550001 (2014). https://doi.org/10.1142/S1793604715500010

    Article  ADS  Google Scholar 

  26. Belik, A.a.: Polar and nonpolar phases of BiMO3: a review. J. Solid State Chem. 195, 32–40 (2012). https://doi.org/10.1016/j.jssc.2012.01.025

    Article  ADS  Google Scholar 

  27. Belik, A.A., Iikubo, S., Kodama, K., Igawa, N., Shamoto, S., Niitaka, S., Azuma, M., Shimakawa, Y., Takano, M., Izumi, F., Takayama-Muromachi, E.: Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater. 18, 798–803 (2006). https://doi.org/10.1021/cm052334z

    Article  Google Scholar 

  28. Oka, K., Azuma, M., Chen, W., Yusa, H., Belik, A.A., Takayama-Muromachi, E., Mizumaki, M., Ishimatsu, N., Hiraoka, N., Tsujimoto, M., Tucker, M.G., Attfield, J.P., Shimakawa, Y.: Pressure-induced spin-state transition in BiCoO3. J. Am. Chem. Soc. 132, 9438–9443 (2010). https://doi.org/10.1021/ja102987d

    Article  Google Scholar 

  29. De Oliveira, L. A. S., Sinnecker, J.P., Vieira, M.D., Pentón-Madrigal, A.: Low temperature synthesis, structural, and magnetic characterization of manganese sillenite Bi[sub12]MnO[sub20]. J. Appl. Phys. 107, 09D907 (2010). https://doi.org/10.1063/1.3362927

    Article  Google Scholar 

  30. Köferstein, R., Buttlar, T., Ebbinghaus, S.G.: Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. J. Solid State Chem. 217, 50–56 (2014). https://doi.org/10.1016/j.jssc.2014.05.006

    Article  ADS  Google Scholar 

  31. Mokry, J., Jankovsky, O., Luxa, J., Sedmidubský, D.: Heat capacity, entropy, oxygen non-stoichiometry and magnetic properties of cobalt sillenite Bi24Co2O39−−δ . Thermochim. Acta 619, 26–31 (2015). https://doi.org/10.1016/j.tca.2015.09.019

    Article  Google Scholar 

  32. Saraí Flores Morales, S., León Flores, J.A., Mazariego, J.L.P., Fábrega, V.M., Gómez González, R.W.: Synthesis of Bi25FeO39 by molten salts method and its mössbauer spectrum. Phys. B Condens. Matter. 504, 109–111 (2017). https://doi.org/10.1016/j.physb.2016.10.019

    Article  ADS  Google Scholar 

  33. Amami, T.E.M., Salah, A.: Ben: Structural, spectroscopic studies and magnetic properties of doped sillenites-type oxide Bi12[M]O20 M = Fe, Co. J. Supercond. Nov. Magn. 26, 2997–3004 (2013). https://doi.org/10.1007/s10948-013-2271-8

    Article  Google Scholar 

  34. De Oliveira, L.A.S., Pentón-Madrigal, A., Guimarães, A.P., Sinnecker, J.P.: Thermally activated processes and superparamagnetism in Bi12MnO20 nanoparticles: A comparative study. J. Magn. Magn. Mater. 401, 890–896 (2016). https://doi.org/10.1016/j.jmmm.2015.11.013

    Article  ADS  Google Scholar 

  35. Rangavittal, N., Gururow, T.N., Rao, CR: A study of cubic bismuth oxides of the type Bi26−xMxO40−delta (M = Ti, Mn, Fe, Co, Ni or Pb) related to gamma-Bi2O3. Eur. J. solid state Inorg. Chem. 31, 409–422 (1994)

    Google Scholar 

  36. Michel, C.R., Delgado, E., Martinez, A.H.: Evidence of improvement in gas sensing properties of nanostructured bismuth cobaltite prepared by solution-polymerization method. Sensors Actuators B Chem. 125, 389–395 (2007). https://doi.org/10.1016/j.snb.2007.02.031

    Article  Google Scholar 

  37. Marchand, B., Jalkanen, P., Tuboltsev, V., Vehkamäki, M., Puttaswamy, M., Kemell, M., Mizohata, K., Hatanpää, T., Savin, A., Räisänen, J., Ritala, M., Leskelä, M.: Electric and magnetic properties of ALD-grown BiFeO3 Films. J. Phys. Chem. C 120, 7313–7322 (2016). https://doi.org/10.1021/acs.jpcc.5b11583

    Article  Google Scholar 

  38. Singh, M.K., Prellier, W., Singh, M.P., Katiyar, R.S., Scott, J.F.: Spin-glass transition in single-crystal BiFeO3. Phys. Rev. B 144403, 77 (2008). https://doi.org/10.1103/PhysRevB.77.144403

    Google Scholar 

  39. Alaria, J., Cheval, N., Rode, K., Venkatesan, M., Coey, J.M.D.: Structural and magnetic properties of wurtzite CoO thin films. J. Phys. D. Appl. Phys. 135004, 41 (2008). https://doi.org/10.1088/0022-3727/41/13/135004

    Google Scholar 

  40. Zhao, B.C., Ma, Y.Q., Song, W.H., Sun, Y.P.: Magnetization steps in the phase separated manganite La0.275Pr0.35Ca0.375MnO3. Phys. Lett. A 354, 472–476 (2006). https://doi.org/10.1016/j.physleta.2006.01.088

    Article  ADS  Google Scholar 

Download references

Acknowledgments

R.B. Gangineni would like to acknowledge DST-FASTRACK Project with Dy. No. SERB/F/0724/2013-2014, DAE-BRNS with sanction No: 2012/20/37P/09/BRNS, UGC-MRP/F.No-41-846/2012 (SR), UGC-SAP F.530/15/DRS/2009 and also Central Instrumentation Facility (CIF) at Pondicherry University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Gangineni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasi, U.P.M., Chelvane, J.A., Angappane, S. et al. Influence of Thickness on Structural and Magnetic Properties of Co-rich Bi10Co16O38 Sillenite Thin Films. J Supercond Nov Magn 31, 1623–1629 (2018). https://doi.org/10.1007/s10948-017-4374-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4374-0

Keywords

Navigation