Advertisement

Influence of Thickness on Structural and Magnetic Properties of Co-rich Bi10Co16O38 Sillenite Thin Films

  • U. P. Mohammed Rasi
  • J. Arout Chelvane
  • S. Angappane
  • P. Magudapathy
  • S. Amirthapandian
  • R. B. Gangineni
Original Paper
  • 246 Downloads

Abstract

The effect of thickness on structural and magnetic properties of Co-rich Bi10Co16O38 (BCO) sillenite thin films is investigated systematically. BCO thin films are deposited using a simultaneous evaporation of Bi2O3, Co targets with RF-DC magnetron sputtering along with post-annealing procedure. The magnetic studies reveal an ordered magnetic nature below film thicknesses of 100 nm. Further, the temperature-dependent and field-dependent magnetic data is evaluated to comprehend the microstructure impact on to the magnetic nature of Co-rich sillenite thin films.

Keywords

Bismuth cobalt oxide Magnetic thin films Co-rich Bi sillenite Co-evaporation Sillenites 

Notes

Acknowledgments

R.B. Gangineni would like to acknowledge DST-FASTRACK Project with Dy. No. SERB/F/0724/2013-2014, DAE-BRNS with sanction No: 2012/20/37P/09/BRNS, UGC-MRP/F.No-41-846/2012 (SR), UGC-SAP F.530/15/DRS/2009 and also Central Instrumentation Facility (CIF) at Pondicherry University.

References

  1. 1.
    Ballman, A.A.: The growth and properties of piezoletric bismuth germanium oxide. J. Cryst. Growth 1, 37–40 (1967).  https://doi.org/10.1016/0022-0248(67)90004-8 ADSCrossRefGoogle Scholar
  2. 2.
    Ballman, A.A., Brown, H., Tien, P.K., Martin, R.J.: The growth of single crystalline wave guiding thin films of piezoelectric sillenites. J. Cryst. Growth 20, 251–255 (1973).  https://doi.org/10.1016/0022-0248(73)90013-4 ADSCrossRefGoogle Scholar
  3. 3.
    Frejlich, J., Montenegro, R., dos Santos, T.O., Carvalho, J.F.: Characterization of photorefractive undoped and doped sillenite crystals using holographic and photoconductivity techniques. J. Opt. A: Pure Appl. Opt 10, 104005 (2008).  https://doi.org/10.1088/1464-4258/10/10/104005 ADSCrossRefGoogle Scholar
  4. 4.
    Pedersen, H.C., Webb, D.J., Johansen, P.M.: Fundamental characteristics of space-charge waves in photorefractive sillenite crystals. J. Opt. Soc. Am. B 15, 2573–2580 (1998).  https://doi.org/10.1364/JOSAB.15.002573 ADSCrossRefGoogle Scholar
  5. 5.
    Jerez, V., De Oliveira, I., Frejlich, J.: Optical recording mechanisms in undoped titanosillenite crystals. J. Appl. Phys. 109, 024901 (2011).  https://doi.org/10.1063/1.3533421 ADSCrossRefGoogle Scholar
  6. 6.
    Tanguay, A.R., Mroczkowski, S., Barker, R.C.: The Czochralski growth of optical quality bismuth silicon oxide (Bi12SiO20). J. Cryst. Growth 42, 431–434 (1977).  https://doi.org/10.1016/0022-0248(77)90227-5 ADSCrossRefGoogle Scholar
  7. 7.
    Kargin, Y.F., Egorysheva, A.V., Volkov, V.V., Frolova, M.N., Borodin, M.V., Shandarov, S.M., Shandarov, V.M., Kip, D.: The growth of photorefractive planar BTO/BSO and BTO/BGO waveguide. J. Cryst. Growth 275, e2403—e2407 (2005).  https://doi.org/10.1016/j.jcrysgro.2004.11.349 Google Scholar
  8. 8.
    Brito, I.V., Gesualdi, M.R.R., Ricardo, J., Palácios, F., Muramatsu, M., Valin, J.L.: Photorefractive digital holographic microscopy applied in microstructures analysis. Opt. Commun. 286, 103–110 (2013).  https://doi.org/10.1016/j.optcom.2012.08.085 ADSCrossRefGoogle Scholar
  9. 9.
    Ricardo, J., Muramatsu, M., Palácios, F., Gesualdi, M.R.R., Valin, J.L., Prieto Lopez, M.A.: Digital holographic microscopy with photorefractive sillenite Bi12SiO20 crystals. Opt. Lasers Eng. 51, 949–952 (2013).  https://doi.org/10.1016/j.optlaseng.2012.12.015 CrossRefGoogle Scholar
  10. 10.
    de Oliveira, I., Capovilla, D.A., Moura, A.L., Timóteo, V.S., Carvalho, J.F., Frejlich, J.: Nonlinear photovoltaic effect in sillenite photorefractive crystals. Opt. Mater. 66, 72–78 (2017).  https://doi.org/10.1016/j.optmat.2017.01.028 ADSCrossRefGoogle Scholar
  11. 11.
    Carvalho, J.F.: Optical and magnetic characterization of pure and vanadium-doped Bi12TiO20 sillenite crystals. Opt. Mater. 13, 333–338 (1999).  https://doi.org/10.1016/S0925-3467(99)00077-4 ADSCrossRefGoogle Scholar
  12. 12.
    Sochava, S.L., Buse, K., Krätzig, E.: Photoinduced Hall-current measurements in photorefractive sillenites. Phys. Rev. B 51, 4684–4686 (1995).  https://doi.org/10.1103/PhysRevB.51.4684 ADSCrossRefGoogle Scholar
  13. 13.
    Ahmad, I., Marinova, V., Goovaerts, E.: High-frequency electron paramagnetic resonance of the hole-trapped antisite bismuth center in photorefractive bismuth sillenite crystals. Phys. Rev. B 79, 2–5 (2009).  https://doi.org/10.1103/PhysRevB.79.033107 CrossRefGoogle Scholar
  14. 14.
    Reyher, H.-J., Ruschke, J., Mersch, F.: Photoinduced linear dichroism in sillenite crystals and in diamond. Radiat. Eff. Defects Solids 136, 129–132 (1995).  https://doi.org/10.1080/10420159508218807 CrossRefGoogle Scholar
  15. 15.
    Briat, B., Panchenko, T. V, Rjeily, H.B., Hamri, A.: Optical and magneto-optical characterization of the Al acceptor levels in Bi12SiO20. J. Opt. Soc. Am. B 15, 2147–2153 (1998).  https://doi.org/10.1364/JOSAB.15.002147 ADSCrossRefGoogle Scholar
  16. 16.
    Tassev, V., Diankov, G., Gospodinov, M.: Doped sillenite crystals applicable for fiber-optic magnetic sensors. Opt. Mater. 6, 347–351 (1996).  https://doi.org/10.1016/S0925-3467(96)00058-4 ADSCrossRefGoogle Scholar
  17. 17.
    Valant, M., Suvorov, D.: A stoichiometric model for sillenites. Chem. Mater 14, 3471–3476 (2002).  https://doi.org/10.1021/cm021173l CrossRefGoogle Scholar
  18. 18.
    Rao, R., Garg, A.B., Sakuntala, T.: High pressure stability of bismuth sillenite: a Raman spectroscopic and x-ray diffraction study. J. Appl. Phys. 108, 083508 (2010).  https://doi.org/10.1063/1.3496659 ADSCrossRefGoogle Scholar
  19. 19.
    Scurti, C.A., Auvray, N., Lufaso, M.W., Takeda, S., Kohno, H., Arenas, D.J., Scurti, C.A., Auvray, N., Lufaso, M.W., Takeda, S., Kohno, H., Arenas, D.J.: Electron diffraction study of the sillenites Bi12SiO20, Bi25FeO39 and Bi25InO39: evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites. AIP Adv. 87125, 0–10 (2014).  https://doi.org/10.1063/1.4893341 Google Scholar
  20. 20.
    Gopalakrishnan, J.: Synthesis and structure of some interesting oxides of bismuth. J. Chem. Sci. 96, 449 (1986).  https://doi.org/10.1007/BF02936297 CrossRefGoogle Scholar
  21. 21.
    Cai, M.-Q., Liu, J.-C., Yang, G.-W., Cao, Y.-L., Tan, X., Chen, X.-Y., Wang, Y.-G., Wang, L.-L., Hu, W.-Y.: First-principles study of structural, electronic, and multiferroic properties in BiCoO3. J. Chem. Phys. 126, 154708 (2007).  https://doi.org/10.1063/1.2483798 ADSCrossRefGoogle Scholar
  22. 22.
    Uratani, Y., Shishidou, T., Ishii, F., Oguchi, T.: First-principles predictions of giant electric polarization. Jpn. J. Appl. Phys. 44, 7130–7133 (2005).  https://doi.org/10.1143/JJAP.44.7130 ADSCrossRefGoogle Scholar
  23. 23.
    Chen, X.-Y., Tian, R.-Y., Wu, J.-M., Zhao, Y.-J., Ding, H.-C., Duan, C.-G.: Fe, Mn, and Cr doped BiCoO3 for magnetoelectric application: a first-principles study. J. Phys. Condens. Matter. 23, 326005 (2011).  https://doi.org/10.1088/0953-8984/23/32/326005 CrossRefGoogle Scholar
  24. 24.
    Dong, X.L., Xu, M.X., Hong, K.Q., Yuan, X.P.: First-principles investigation of magnetism and ferroelectricity in Ni-doped BiCoO3. Phys. status solidi. 250, 1864–1869 (2013).  https://doi.org/10.1002/pssb.201248536 CrossRefGoogle Scholar
  25. 25.
    Sun, B., Li, Q., Liu, Y., Chen, P.: Resistive switching of multiferroic BiCoO3 nanoflowers. Funct. Mater. Lett. 8, 1550001 (2014).  https://doi.org/10.1142/S1793604715500010 ADSCrossRefGoogle Scholar
  26. 26.
    Belik, A.a.: Polar and nonpolar phases of BiMO3: a review. J. Solid State Chem. 195, 32–40 (2012).  https://doi.org/10.1016/j.jssc.2012.01.025 ADSCrossRefGoogle Scholar
  27. 27.
    Belik, A.A., Iikubo, S., Kodama, K., Igawa, N., Shamoto, S., Niitaka, S., Azuma, M., Shimakawa, Y., Takano, M., Izumi, F., Takayama-Muromachi, E.: Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater. 18, 798–803 (2006).  https://doi.org/10.1021/cm052334z CrossRefGoogle Scholar
  28. 28.
    Oka, K., Azuma, M., Chen, W., Yusa, H., Belik, A.A., Takayama-Muromachi, E., Mizumaki, M., Ishimatsu, N., Hiraoka, N., Tsujimoto, M., Tucker, M.G., Attfield, J.P., Shimakawa, Y.: Pressure-induced spin-state transition in BiCoO3. J. Am. Chem. Soc. 132, 9438–9443 (2010).  https://doi.org/10.1021/ja102987d CrossRefGoogle Scholar
  29. 29.
    De Oliveira, L. A. S., Sinnecker, J.P., Vieira, M.D., Pentón-Madrigal, A.: Low temperature synthesis, structural, and magnetic characterization of manganese sillenite Bi[sub12]MnO[sub20]. J. Appl. Phys. 107, 09D907 (2010).  https://doi.org/10.1063/1.3362927 CrossRefGoogle Scholar
  30. 30.
    Köferstein, R., Buttlar, T., Ebbinghaus, S.G.: Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes. J. Solid State Chem. 217, 50–56 (2014).  https://doi.org/10.1016/j.jssc.2014.05.006 ADSCrossRefGoogle Scholar
  31. 31.
    Mokry, J., Jankovsky, O., Luxa, J., Sedmidubský, D.: Heat capacity, entropy, oxygen non-stoichiometry and magnetic properties of cobalt sillenite Bi24Co2O39−−δ. Thermochim. Acta 619, 26–31 (2015).  https://doi.org/10.1016/j.tca.2015.09.019 CrossRefGoogle Scholar
  32. 32.
    Saraí Flores Morales, S., León Flores, J.A., Mazariego, J.L.P., Fábrega, V.M., Gómez González, R.W.: Synthesis of Bi25FeO39 by molten salts method and its mössbauer spectrum. Phys. B Condens. Matter. 504, 109–111 (2017).  https://doi.org/10.1016/j.physb.2016.10.019 ADSCrossRefGoogle Scholar
  33. 33.
    Amami, T.E.M., Salah, A.: Ben: Structural, spectroscopic studies and magnetic properties of doped sillenites-type oxide Bi12[M]O20 M = Fe, Co. J. Supercond. Nov. Magn. 26, 2997–3004 (2013).  https://doi.org/10.1007/s10948-013-2271-8 CrossRefGoogle Scholar
  34. 34.
    De Oliveira, L.A.S., Pentón-Madrigal, A., Guimarães, A.P., Sinnecker, J.P.: Thermally activated processes and superparamagnetism in Bi12MnO20 nanoparticles: A comparative study. J. Magn. Magn. Mater. 401, 890–896 (2016).  https://doi.org/10.1016/j.jmmm.2015.11.013 ADSCrossRefGoogle Scholar
  35. 35.
    Rangavittal, N., Gururow, T.N., Rao, CR: A study of cubic bismuth oxides of the type Bi26−xMxO40−delta (M = Ti, Mn, Fe, Co, Ni or Pb) related to gamma-Bi2O3. Eur. J. solid state Inorg. Chem. 31, 409–422 (1994)Google Scholar
  36. 36.
    Michel, C.R., Delgado, E., Martinez, A.H.: Evidence of improvement in gas sensing properties of nanostructured bismuth cobaltite prepared by solution-polymerization method. Sensors Actuators B Chem. 125, 389–395 (2007).  https://doi.org/10.1016/j.snb.2007.02.031 CrossRefGoogle Scholar
  37. 37.
    Marchand, B., Jalkanen, P., Tuboltsev, V., Vehkamäki, M., Puttaswamy, M., Kemell, M., Mizohata, K., Hatanpää, T., Savin, A., Räisänen, J., Ritala, M., Leskelä, M.: Electric and magnetic properties of ALD-grown BiFeO3 Films. J. Phys. Chem. C 120, 7313–7322 (2016).  https://doi.org/10.1021/acs.jpcc.5b11583 CrossRefGoogle Scholar
  38. 38.
    Singh, M.K., Prellier, W., Singh, M.P., Katiyar, R.S., Scott, J.F.: Spin-glass transition in single-crystal BiFeO3. Phys. Rev. B 144403, 77 (2008).  https://doi.org/10.1103/PhysRevB.77.144403 Google Scholar
  39. 39.
    Alaria, J., Cheval, N., Rode, K., Venkatesan, M., Coey, J.M.D.: Structural and magnetic properties of wurtzite CoO thin films. J. Phys. D. Appl. Phys. 135004, 41 (2008).  https://doi.org/10.1088/0022-3727/41/13/135004 Google Scholar
  40. 40.
    Zhao, B.C., Ma, Y.Q., Song, W.H., Sun, Y.P.: Magnetization steps in the phase separated manganite La0.275Pr0.35Ca0.375MnO3. Phys. Lett. A 354, 472–476 (2006).  https://doi.org/10.1016/j.physleta.2006.01.088 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • U. P. Mohammed Rasi
    • 1
  • J. Arout Chelvane
    • 2
  • S. Angappane
    • 3
  • P. Magudapathy
    • 4
  • S. Amirthapandian
    • 4
  • R. B. Gangineni
    • 1
  1. 1.Department of Physics, School of Physical Chemical and Applied SciencesPondicherry UniversityKalapetIndia
  2. 2.Defence Metallurgical Research LaboratoryHyderabadIndia
  3. 3.Centre for Nano and Soft Matter Sciences, JalahalliBangaloreIndia
  4. 4.Materials Physics Division, Materials Science GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations