Advertisement

A Density Functional Theory Investigations of Half-Heusler Compounds RhVZ (Z = P, As, Sb)

  • Rashid Ahmad
  • Nasir Mehmood
Original Paper
  • 65 Downloads

Abstract

We have studied the half-Heusler compounds RhVZ (Z = P, As, Sb) using Density Functional Theory (DFT). The method of the Full Potential Linearly Augmented Plane Wave (FP-LAPW) is employed in the Wien2k package for calculation of structural, elastic, mechanical, electronic, magnetic, and optical properties. Lattice constants are found in the range 5.67 − 5.80 Å. Analysis of elastic properties shows that two of the compounds namely RhVP and RhVAs are ductile while RhVSb is brittle in nature. All three compounds are half-metals as revealed from the band structures and Density of States (DoS) calculations. In all of them, spin-down channels have the small band gaps, while spin-up channels are conducting. These compounds follow the Slater-Pauling 18 (M T o t = Z T o t − 18) electron rule with the total magnetic moments in the range 1 − 2 μ B. Optical properties like dielectric function, refractive index, reflectivity, conductivity, and absorption coefficient are calculated and discussed.

Keywords

Half-Heusler compounds Half-metallic compounds Optical properties Electronic properties Magnetic properties Ferromagnetic materials 

References

  1. 1.
    Baibich, M.N., Broto, J.M., Fert, A., Nguyen, V.D.F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    de Groot, R.A., Mueller, F.M., Engen, P.G.V., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Wolverton, C., Ghosh, A.W., Butler, W.H.: Computational investigation of half-heusler compounds for spintronics applications. Phys. Rev. B 95, 024411 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Mehmood, N., Ahmad, R., Murtaza, G.: Ab initio investigations of structural, elastic, mechanical, electronic, magnetic, and optical properties of half-Heusler compounds RhCrZ (Z = Si, Ge). J. Supercond. Nov. Magn. (2017)Google Scholar
  5. 5.
    Mehmood, N., Ahmad, R.: Structural, electronic, magnetic, and optical properties of half-Heusler alloys RuMnZ (Z = P, As): a first-principle study. J. Supercond. Nov. Magn. (2017)Google Scholar
  6. 6.
    Ahmad, R., Mehmood, N.: A first principle study of half-Heusler compounds CrTiZ (Z = P, As). J. Supercond. Nov. Magn. (2017)Google Scholar
  7. 7.
    Mehmood, N., Ahmad, R.: Structural, electronic, magnetic and optical investigations of half-heusler compounds YZSb (Z = Cr, Mn): FP-LAPW method. J. Supercond. Nov. Magn. (2017)Google Scholar
  8. 8.
    Singh, D.J., Nordström, L.: Planewaves, Pseudopotentials, and the LAPW Method. Springer, New York, NY (2006)Google Scholar
  9. 9.
    Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, Wien Austria (2001)Google Scholar
  10. 10.
    Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D., Fiolhais, C.: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865. https://link.aps.org/doi/10.1103/PhysRevLett.77.3865 ADSCrossRefGoogle Scholar
  12. 12.
    von Barth, U., Hedin, L.: A local exchange-correlation potential for the spin polarized case: I. J. Phys. C: Solid State Phys. 5(13), 1629–1642 (1972)ADSCrossRefGoogle Scholar
  13. 13.
    Pant, M.M., Rajagopal, A.K.: Theory of inhomogeneous magnetic electron gas. Solid State Commun. 10, 1157–1160 (1972).  https://doi.org/10.1016/0038-1098(72)90934-9. http://adsabs.harvard.edu/abs/1972SSCom..10.1157P ADSCrossRefGoogle Scholar
  14. 14.
    Born, M., Huang, K.: Dynamical Theory and Experiment I. Springer Verlag, Berlin (1982)Google Scholar
  15. 15.
    Wu, Z.J., Jun, X.E., Ping, Feng, L., Juan, M.X.: Jian, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76(1), 054115 (2007)ADSGoogle Scholar
  16. 16.
    Peng, F., Han, L., Fu, H., Cheng, X.: First-principles calculations on elasticity and the thermodynamic properties of TaC under pressure. Physica Status Solidi B Basic Research 246, 1590 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Harrison, W.A.: Electronic Structure and Properties of Solids, Electronic Structure and Properties of Solids. Dover, New York (1989)Google Scholar
  18. 18.
    Mayer, B., Anton, H., Bott, E., Methfessel, M., Sticht, J., Harris, J., Schmidt, P.C.: Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics 11, 23 (2003)CrossRefGoogle Scholar
  19. 19.
    Zener, C.: Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with Perovskite structure. Phys. Rev. 82, 403 (1951)ADSCrossRefGoogle Scholar
  20. 20.
    Yang, Y., Lu, H., Yu, C., Chen, J.M.: First-principles calculations of mechanical properties of TiC and TiN. J. Alloys Compd. 485, 542 (2009)CrossRefGoogle Scholar
  21. 21.
    Gschneidner, K.R., Alan, P., Alexandra, M., James, Z., Zhehua, L., Thomas, H., David, C.L., Ye, C.H., Yiying, S., Aaron, K., Kesse, D.: A family of ductile intermetallic compounds. Nat. Mater. 2, 587 (2003)CrossRefGoogle Scholar
  22. 22.
    Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992)CrossRefGoogle Scholar
  23. 23.
    Pugh, S.F.: XCII. Relations Between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45, 823 (1954)CrossRefGoogle Scholar
  24. 24.
    Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: In Elastic Constants and Elastic Moduli of Metals and Insulators: a Handbook. Naukova Dumka, Kiev (1963)Google Scholar
  25. 25.
    Galankis, I., Dederiches, P.H. (eds.): Half-metallic Alloys: Fundamentals and Applications. Springer, Berlin (2005)Google Scholar
  26. 26.
    Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev B 66, 174429 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Fox, A.M.: Optical Properties of Solids. Oxford University Press (2001)Google Scholar
  28. 28.
    Wooten, F.: Optical Properties of Solids. Academic Press (1972)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsKohat University of Science and TechnologyKohatPakistan

Personalised recommendations