Flux Quantization and Aharonov-Bohm Effect in Superconducting Rings

  • Ahmed Kenawy
  • Wim Magnus
  • Bart Sorée
Original Paper


Superconductivity is a macroscopic coherent state exhibiting various quantum phenomena such as magnetic flux quantization. When a superconducting ring is placed in a magnetic field, a current flows to expel the field from the ring and to ensure that the enclosed flux is an integer multiple of h/(2|e|). Although the quantization of magnetic flux in ring structures is extensively studied in literature, the applied magnetic field is typically assumed to be homogeneous, implicitly implying an interplay between field expulsion and flux quantization. Here, we propose to decouple these two effects by employing an Aharonov-Bohm-like structure where the superconducting ring is threaded by a magnetic core (to which the applied field is confined). Although the magnetic field vanishes inside the ring, the formation of vortices takes place, corresponding to a change in the flux state of the ring. The time evolution of the density of superconducting electrons is studied using the time-dependent Ginzburg-Landau equations.


Superconducting rings Flux quantization Aharonov-Bohm effect Time-dependent Ginzburg-Landau equations 


  1. 1.
    Deaver, B.S., Fairbank, W.M.: Phys. Rev. Lett. 7, 43 (1961)ADSCrossRefGoogle Scholar
  2. 2.
    Doll, R., Näbauer, M.: Phys. Rev. Lett. 7, 51 (1961)ADSCrossRefGoogle Scholar
  3. 3.
    Little, W.A., Parks, R.D.: Phys. Rev. Lett. 9, 9 (1962)ADSCrossRefGoogle Scholar
  4. 4.
    Moshchalkov, V.V., Gielen, L., Strunk, C., Jonckheere, R., Qiu, X., Haesendonck, C.V., Bruynseraede, Y.: Nature 373, 319 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Geim, A.K., Grigorieva, I.V., Dubonos, S.V., Lok, J.G.S., Maan, J.C., Filippov, A.E., Peeters, F.M.: Nature 390, 259 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Geim, A.K., Dubonos, S.V., Palacios, J.J., Grigorieva, I.V., Henini, M., Schermer, J.J.: Phys. Rev. Lett. 85, 1528 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Chibotaru, L.F., Ceulemans, A., Bruyndoncx, V., Moshchalkov, V.V.: Nature 408, 833 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Kanda, A., Baelus, B.J., Peeters, F.M., Kadowaki, K., Ootuka, Y.: Phys. Rev. Lett. 93, 257002 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Vodolazov, D., Peeters, F.: Physica C Supercond. 400, 165 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Lu-Dac, M., Kabanov, V.V.: Phys. Rev. B 79, 184521 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Vodolazov, D.Y., Peeters, F.M., Dubonos, S.V., Geim, A.K.: Phys. Rev. B 67, 054506 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Peng, L., Wei, Z., Liu, Y., Fang, Y., Cai, C.: J. Supercond. Nov. Magn. 27, 1217 (2014)CrossRefGoogle Scholar
  13. 13.
    Peng, L., Lin, J., Zhou, Y., Zhang, Y.: J. Supercond. Nov. Magn. 28, 3507 (2015)CrossRefGoogle Scholar
  14. 14.
    Peng, L., Cai, C., Chen, C.: J. Supercond. Nov. Magn. 30, 2059 (2017)CrossRefGoogle Scholar
  15. 15.
    Peng, L., Cai, C., Lin, J., Chen, J., Liu, Y., Zhou, Y.: J. Supercond. Nov. Magn. 29, 1197 (2016)CrossRefGoogle Scholar
  16. 16.
    Aharonov, Y., Bohm, D.: Phys. Rev. 115, 485 (1959)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gor’kov, L.P., Éliashberg, G.M.: Soviet Physics JETP 27, 328 (1968)ADSGoogle Scholar
  18. 18.
    Cyrot, M.: Rep. Prog. Phys. 36, 103 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    Gropp, W.D., Kaper, H.G., Leaf, G.K., Levine, D.M., Palumbo, M., Vinokur, V.M.: J. Comput. Phys. 123, 254 (1996)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Alstrøm, T.S., Sørensen, M.P., Pedersen, N.F., Madsen, S.: Acta Appl. Math. 115, 63 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tinkham, M.: Introduction to Superconductivity, 2nd Edn. Dover Publications (2004)Google Scholar
  22. 22.
    Vodolazov, D.Y., Peeters, F.M.: Phys. Rev. B 66, 054537 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.KU LeuvenInstitute for Theoretical PhysicsLeuvenBelgium
  2. 2.Physics Modeling and Simulation (MSP)IMECLeuvenBelgium
  3. 3.Physics DepartmentUniversity of AntwerpAntwerpenBelgium
  4. 4.Department of Electrical EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations