Skip to main content
Log in

Tunable Microwave Absorption Properties in Ni–Zn-Substituted BaCoTiFe10O19

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ni–Zn-substituted BaCoTiFe10O19 were successfully prepared by a sol-gel combustion method. The grain size of samples is about 150–800 nm ,and the grains first increase and then decrease with increasing x. Through XRD analysis, all diffraction peaks correspond to the BaTiCoFe10O19 and no other phase signal is detected. With x = 0.3, the saturation magnetization (M s) is biggest (66.7 emu/g) and its coercivity (H c) is 172.3 Oe. The curves μ μ have distorted semicircles, and each semicircle has an extremum. Each extremum of μ μ curve corresponds to a peak of μ curve and has response to reflection loss (RL), which is further illuminated. When x = 0.3, the widest bandwidth of R L ≤−10 dB is 6.13 GHz (9.68–15.81 GHz) at d = 2.6 mm. The RL curve closely relates to distorted semicircle of μ μ curve, and the relation is also deeply illuminated, which is beneficial to study absorption materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yin, Y., Liu, X., Wei, X., Yu, R., Shui, J.: Porous CNTs/co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Inter. 8 (50), 34686–34698 (2016)

    Article  Google Scholar 

  2. Wang, Y., Zhang, W., Luo, C., Wu, X., Yan, G.: Superparamagnetic FeCo@SnO2 nanoparticles on graphene-polyaniline: synthesis and enhanced electromagnetic wave absorption properties. Ceram. Int. 42(10), 12496–12502 (2016)

    Article  Google Scholar 

  3. Chen, J., Meng, P., Wang, M., Zhou, G., Wang, X., Xu, G.: Electromagnetic and microwave absorption properties of BaMg x Co1−x TiFe10O19. J. Alloy. Compd. 679, 335–340 (2016)

    Article  Google Scholar 

  4. Narang, S.B., Pubby, K., Singh, C.: Thickness and composition tailoring of K- and Ka-band microwave absorption of BaCo x Ti x Fe(12−2x)O19 ferrites. J. Electron. Mater. 46(2), 718–728 (2017)

    Article  ADS  Google Scholar 

  5. Yang, H., Cao, M., Li, Y., Shi, H., Hou, Z., Fang, X., Jin, H., Wang, W., Yuan, J.: Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv. Opt. Mater. 2(3), 214–219 (2014)

    Article  Google Scholar 

  6. Meng, P., Xiong, K., Wang, L., Li, S., Cheng, Y., Xu, G.: Tunable complex permeability and enhanced microwave absorption properties of BaNi x Co1−xTiFe10O19. J. Alloy. Compd. 628, 75–80 (2015)

    Article  Google Scholar 

  7. Cao, M.S., Yang, J., Song, W.L., Zhang, D.Q., Wen, B., Jin, H.B., Hou, Z.L., Yuan, J.: Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Inter. 4(12), 6949–6956 (2012)

    Article  Google Scholar 

  8. Lu, Y., Wang, Y., Li, H., Lin, Y., Jiang, Z., Xie, Z., Kuang, Q., Zheng, L.: MOF-Derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Inter. 7(24), 13604–13611 (2015)

    Article  Google Scholar 

  9. Huang, Y., Zhang, H., Zeng, G., Li, Z., Zhang, D., Zhu, H., Xie, R., Zheng, L., Zhu, J.: The microwave absorption properties of carbon-encapsulated nickel nanoparticles/silicone resin flexible absorbing material. J. Alloy. Compd. 682, 138–143 (2016)

    Article  Google Scholar 

  10. Wen, F., Zhang, F., Liu, Z.: Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115(29), 14025–14030 (2011)

    Article  Google Scholar 

  11. Zhang, P., Han, X., Kang, L., Qiang, R., Liu, W., Du, Y.: Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv. 3(31), 12694 (2013)

    Article  Google Scholar 

  12. Ghzaiel, T.B., Dhaoui, W., Schoenstein, F., Talbot, P., Mazaleyrat, F.: Substitution effect of Me = Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19 for absorbing electromagnetic waves. J. Alloy. Compd. 692, 774–786 (2017)

    Article  Google Scholar 

  13. Manikandan, M., Venkateswaran, C.: Effect of high energy milling on the synthesis temperature, magnetic and electrical properties of barium hexagonal ferrite. J. Magn. Magn. Mater. 358–359, 82–86 (2014)

    Article  Google Scholar 

  14. Zhang, W., Bai, Y., Han, X., Wang, L., Lu, X., Qiao, L.: Magnetic properties of Co–Ti substituted barium hexaferrite. J. Alloy. Compd. 546, 234–238 (2013)

    Article  Google Scholar 

  15. Narang, S.B., Pubby, K.: Single-layer & double-layer microwave absorbers based on Co–Ti substituted barium hexaferrites for application in X and Ku-band. J. Mater. Res. 31(23), 3682–3693 (2016)

    Article  ADS  Google Scholar 

  16. Ghasemi, A., S̆epelák, V., Liu, X., Morisako, A.: The role of cations distribution on magnetic and reflection loss properties of ferrimagnetic SrFe12−x(Sn0.5Zn0.5) x O19. J. Appl. Phys. 107(9), 09A734 (2010)

    Article  Google Scholar 

  17. Kong, L.B., Li, Z.W., Liu, L., Huang, R., Abshinova, M., Yang, Z.H., Tang, C.B., Tan, P.K., Deng, C.R., Matitsine, S.: Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58(4), 203–259 (2013)

    Article  Google Scholar 

  18. Wang, L., Yu, H., Ren, X., Xu, G.: Magnetic and microwave absorption properties of BaMnxCo1 −xTiFe10O19. J. Alloy. Compd. 588, 212–216 (2014)

    Article  Google Scholar 

  19. Dong, C., Wang, X., Zhou, P., Liu, T., Xie, J., Deng, L.: Microwave magnetic and absorption properties of M-type ferrite BaCo x Ti x Fe12−2x O19 in the Ka band. J. Magn. Magn. Mater. 354, 340–344 (2014)

    Article  ADS  Google Scholar 

  20. Sözeri, H., Deligöz, H., Kavas, H., Baykal, A.: Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M = Mn2 + , Co2 + , Cu2 + , Ni2 + , Zn2 + ). Ceram. Int. 40(3), 8645–8657 (2014)

    Article  Google Scholar 

  21. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012)

    Article  Google Scholar 

  22. Yang, Z., Wang, C.S., Li, X.H., Zeng, H.X.: (Zn, Ni, Ti) substituted barium ferrite particles with improved temperature coefficient of coercivity. Mater. Sci. Eng. B 90, 142–145 (2002)

    Article  Google Scholar 

  23. Khashan, S.A., Elnajjar, E., Haik, Y.: CFD Simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 323(23), 2960–2967 (2011)

    Article  ADS  Google Scholar 

  24. González-Angeles, A., Mendoza-Suarez, G., Grusková, A., Papánová, M., Slama, J.: Magnetic studies of Zn–Ti-substituted barium hexaferrites prepared by mechanical milling. Mater. Lett. 59(1), 26–31 (2005)

    Article  Google Scholar 

  25. Zhang, D., Li, J., Zhang, H., Wu, Y., Li, Q., Ma, G.: Ba(coti)1.22fe9.56o19 ferrites prepared by sol–gel method and solid-state method techniques. Appl. Phys. A 122(4), 306 (2016)

    Article  ADS  Google Scholar 

  26. Wang, C., Li, L., Zhou, J., Qi, X., Yue, Z., Wang, X.: Microstructures and high-frequency magnetic properties of low-temperature sintered of Co-Ti substitued barium ferrites. J. Magn. Magn. Mater. 257, 100–106 (2003)

    Article  ADS  Google Scholar 

  27. Wartewig, P., Krause, M.K., Esquinazi, P., Roslor, S., Sonntag, R.: Magnetic properties of Zn- and Ti-substituted barium hexaferrite. J. Magn. Magn. Mater. 192(83–99) (1999)

  28. Li, Z.W., Guoqing, L., Di, N.-L., Cheng, Z.-H., Ong, C.K.: Mössbauer spectra of CoZn-substituted Z-type barium ferrite Ba3Co2−x Zn x Fe24O41. Phys. Rev. B 72(10), 104420 (2005)

    Article  ADS  Google Scholar 

  29. Singh, C., Narang, S.B., Hudiara, I.S., Bai, Y., Marina, K.: Hysteresis analysis of Co–Ti substituted M-type Ba–Sr hexagonal ferrite. Mater. Lett. 63(22), 1921–1924 (2009)

    Article  Google Scholar 

  30. Singh, C., Bindra Narang, S., Hudiara, I.S., Bai, Y., Tabatabaei, F.: Static magnetic properties of Co and Ru substituted Ba–Sr ferrite. Mater. Res. Bull. 43(1), 176–184 (2008)

    Article  Google Scholar 

  31. Zhao, H., Du, Y., Kang, L., Xu, P., Du, L., Sun, Z., Han, X.: Precursor-directed synthesis of quasi-spherical barium ferrite particles with good dispersion and magnetic properties. Cryst. Eng. Comm. 15(4), 808–815 (2013)

    Article  Google Scholar 

  32. Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  33. Yang, Y., Zhang, B., Xu, W., Shi, Y., Zhou, N., Lu, H.: Microwave absorption studies of W-hexaferrite prepared by co-precipitation/mechanical milling. J. Magn. Magn. Mater. 265(2), 119–122 (2003)

    Article  ADS  Google Scholar 

  34. Lv, H., Ji, G., Liu, W., Zhang, H., Du, Y.: Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3(39), 10232–10241 (2015)

    Article  Google Scholar 

  35. Lv, H., Liang, X., Ji, G., Zhang, H., Du, Y.: Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Inter. 7(18), 9776–9783 (2015)

    Article  Google Scholar 

  36. Lu, B., Huang, H., Dong, X.L., Zhang, X.F., Lei, J.P., Sun, J.P., Dong, C.: Influence of alloy components on electromagnetic characteristics of core/shell-type Fe–Ni nanoparticles. J. Appl. Phys. 104(11), 114313 (2008)

    Article  ADS  Google Scholar 

  37. Ma, Z., Liu, Q., Yuan, J., Wang, Z., Cao, C., Wang, J.: Analyses on multiple resonance behaviors and microwave reflection loss in magnetic Co microflowers. Phys. Status Solidi B 249(3), 575–580 (2012)

    Article  ADS  Google Scholar 

  38. Liu, T., Xie, X., Pang, Y., Kobayashi, S.: Co/c nanoparticles with low graphitization degree: a high performance microwave-absorbing material. J. Mater. Chem. C 4(8), 1727–1735 (2016)

    Article  Google Scholar 

  39. Qi, X., Hu, Q., Cai, H., Xie, R., Bai, Z., Jiang, Y., Qin, S., Zhong, W., Du, Y.: Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties. Sci. Rep. 6, 37972 (2016)

    Article  ADS  Google Scholar 

  40. Xie, X., Pang, Y., Kikuchi, H., Liu, T.: The synergistic effects of the carbon coating and micropore structure on the microwave absorption properties of the Co/CoO nanoparticles. Phys. Chem. Chem. Phys. 18(44), 30507–30514 (2016)

    Article  Google Scholar 

  41. Alam, R.S., Moradi, M., Rostami, M., Nikmanesh, H., Moayedi, R., Bai, Y.: Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the key scientific research projects of the Southwest University of Science and Technology (no. 15zx2101 and no. 17zx910201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangliang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W., Liu, X.L., Wang, H. et al. Tunable Microwave Absorption Properties in Ni–Zn-Substituted BaCoTiFe10O19 . J Supercond Nov Magn 31, 1411–1419 (2018). https://doi.org/10.1007/s10948-017-4356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4356-2

Keywords

Navigation