Advertisement

Tunable Microwave Absorption Properties in Ni–Zn-Substituted BaCoTiFe10O19

  • Wenjia Xing
  • Xiao Long Liu
  • Hua Wang
  • Jing Chen
  • Qingbo Fan
  • Qin Lei
  • Guangliang Xu
Original Paper

Abstract

Ni–Zn-substituted BaCoTiFe10O19 were successfully prepared by a sol-gel combustion method. The grain size of samples is about 150–800 nm ,and the grains first increase and then decrease with increasing x. Through XRD analysis, all diffraction peaks correspond to the BaTiCoFe10O19 and no other phase signal is detected. With x = 0.3, the saturation magnetization (M s) is biggest (66.7 emu/g) and its coercivity (H c) is 172.3 Oe. The curves μ μ have distorted semicircles, and each semicircle has an extremum. Each extremum of μ μ curve corresponds to a peak of μ curve and has response to reflection loss (RL), which is further illuminated. When x = 0.3, the widest bandwidth of R L ≤−10 dB is 6.13 GHz (9.68–15.81 GHz) at d = 2.6 mm. The RL curve closely relates to distorted semicircle of μ μ curve, and the relation is also deeply illuminated, which is beneficial to study absorption materials.

Keywords

Barium ferrite Magnetic loss Electromagnetic parameters Reflection loss 

Notes

Acknowledgments

This work is supported by the key scientific research projects of the Southwest University of Science and Technology (no. 15zx2101 and no. 17zx910201).

References

  1. 1.
    Yin, Y., Liu, X., Wei, X., Yu, R., Shui, J.: Porous CNTs/co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Inter. 8 (50), 34686–34698 (2016)CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Zhang, W., Luo, C., Wu, X., Yan, G.: Superparamagnetic FeCo@SnO2 nanoparticles on graphene-polyaniline: synthesis and enhanced electromagnetic wave absorption properties. Ceram. Int. 42(10), 12496–12502 (2016)CrossRefGoogle Scholar
  3. 3.
    Chen, J., Meng, P., Wang, M., Zhou, G., Wang, X., Xu, G.: Electromagnetic and microwave absorption properties of BaMgxCo1−xTiFe10O19. J. Alloy. Compd. 679, 335–340 (2016)CrossRefGoogle Scholar
  4. 4.
    Narang, S.B., Pubby, K., Singh, C.: Thickness and composition tailoring of K- and Ka-band microwave absorption of BaCoxTixFe(12−2x)O19 ferrites. J. Electron. Mater. 46(2), 718–728 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Yang, H., Cao, M., Li, Y., Shi, H., Hou, Z., Fang, X., Jin, H., Wang, W., Yuan, J.: Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv. Opt. Mater. 2(3), 214–219 (2014)CrossRefGoogle Scholar
  6. 6.
    Meng, P., Xiong, K., Wang, L., Li, S., Cheng, Y., Xu, G.: Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1−xTiFe10O19. J. Alloy. Compd. 628, 75–80 (2015)CrossRefGoogle Scholar
  7. 7.
    Cao, M.S., Yang, J., Song, W.L., Zhang, D.Q., Wen, B., Jin, H.B., Hou, Z.L., Yuan, J.: Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Inter. 4(12), 6949–6956 (2012)CrossRefGoogle Scholar
  8. 8.
    Lu, Y., Wang, Y., Li, H., Lin, Y., Jiang, Z., Xie, Z., Kuang, Q., Zheng, L.: MOF-Derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Inter. 7(24), 13604–13611 (2015)CrossRefGoogle Scholar
  9. 9.
    Huang, Y., Zhang, H., Zeng, G., Li, Z., Zhang, D., Zhu, H., Xie, R., Zheng, L., Zhu, J.: The microwave absorption properties of carbon-encapsulated nickel nanoparticles/silicone resin flexible absorbing material. J. Alloy. Compd. 682, 138–143 (2016)CrossRefGoogle Scholar
  10. 10.
    Wen, F., Zhang, F., Liu, Z.: Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 115(29), 14025–14030 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhang, P., Han, X., Kang, L., Qiang, R., Liu, W., Du, Y.: Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv. 3(31), 12694 (2013)CrossRefGoogle Scholar
  12. 12.
    Ghzaiel, T.B., Dhaoui, W., Schoenstein, F., Talbot, P., Mazaleyrat, F.: Substitution effect of Me = Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19 for absorbing electromagnetic waves. J. Alloy. Compd. 692, 774–786 (2017)CrossRefGoogle Scholar
  13. 13.
    Manikandan, M., Venkateswaran, C.: Effect of high energy milling on the synthesis temperature, magnetic and electrical properties of barium hexagonal ferrite. J. Magn. Magn. Mater. 358–359, 82–86 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhang, W., Bai, Y., Han, X., Wang, L., Lu, X., Qiao, L.: Magnetic properties of Co–Ti substituted barium hexaferrite. J. Alloy. Compd. 546, 234–238 (2013)CrossRefGoogle Scholar
  15. 15.
    Narang, S.B., Pubby, K.: Single-layer & double-layer microwave absorbers based on Co–Ti substituted barium hexaferrites for application in X and Ku-band. J. Mater. Res. 31(23), 3682–3693 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Ghasemi, A., S̆epelák, V., Liu, X., Morisako, A.: The role of cations distribution on magnetic and reflection loss properties of ferrimagnetic SrFe12−x(Sn0.5Zn0.5)xO19. J. Appl. Phys. 107(9), 09A734 (2010)CrossRefGoogle Scholar
  17. 17.
    Kong, L.B., Li, Z.W., Liu, L., Huang, R., Abshinova, M., Yang, Z.H., Tang, C.B., Tan, P.K., Deng, C.R., Matitsine, S.: Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58(4), 203–259 (2013)CrossRefGoogle Scholar
  18. 18.
    Wang, L., Yu, H., Ren, X., Xu, G.: Magnetic and microwave absorption properties of BaMnxCo1 −xTiFe10O19. J. Alloy. Compd. 588, 212–216 (2014)CrossRefGoogle Scholar
  19. 19.
    Dong, C., Wang, X., Zhou, P., Liu, T., Xie, J., Deng, L.: Microwave magnetic and absorption properties of M-type ferrite BaCoxTixFe12−2xO19 in the Ka band. J. Magn. Magn. Mater. 354, 340–344 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Sözeri, H., Deligöz, H., Kavas, H., Baykal, A.: Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M = Mn2 + , Co2 + , Cu2 + , Ni2 + , Zn2 + ). Ceram. Int. 40(3), 8645–8657 (2014)CrossRefGoogle Scholar
  21. 21.
    Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012)CrossRefGoogle Scholar
  22. 22.
    Yang, Z., Wang, C.S., Li, X.H., Zeng, H.X.: (Zn, Ni, Ti) substituted barium ferrite particles with improved temperature coefficient of coercivity. Mater. Sci. Eng. B 90, 142–145 (2002)CrossRefGoogle Scholar
  23. 23.
    Khashan, S.A., Elnajjar, E., Haik, Y.: CFD Simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 323(23), 2960–2967 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    González-Angeles, A., Mendoza-Suarez, G., Grusková, A., Papánová, M., Slama, J.: Magnetic studies of Zn–Ti-substituted barium hexaferrites prepared by mechanical milling. Mater. Lett. 59(1), 26–31 (2005)CrossRefGoogle Scholar
  25. 25.
    Zhang, D., Li, J., Zhang, H., Wu, Y., Li, Q., Ma, G.: Ba(coti)1.22fe9.56o19 ferrites prepared by sol–gel method and solid-state method techniques. Appl. Phys. A 122(4), 306 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, C., Li, L., Zhou, J., Qi, X., Yue, Z., Wang, X.: Microstructures and high-frequency magnetic properties of low-temperature sintered of Co-Ti substitued barium ferrites. J. Magn. Magn. Mater. 257, 100–106 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Wartewig, P., Krause, M.K., Esquinazi, P., Roslor, S., Sonntag, R.: Magnetic properties of Zn- and Ti-substituted barium hexaferrite. J. Magn. Magn. Mater. 192(83–99) (1999)Google Scholar
  28. 28.
    Li, Z.W., Guoqing, L., Di, N.-L., Cheng, Z.-H., Ong, C.K.: Mössbauer spectra of CoZn-substituted Z-type barium ferrite Ba3Co2−xZnxFe24O41. Phys. Rev. B 72(10), 104420 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Singh, C., Narang, S.B., Hudiara, I.S., Bai, Y., Marina, K.: Hysteresis analysis of Co–Ti substituted M-type Ba–Sr hexagonal ferrite. Mater. Lett. 63(22), 1921–1924 (2009)CrossRefGoogle Scholar
  30. 30.
    Singh, C., Bindra Narang, S., Hudiara, I.S., Bai, Y., Tabatabaei, F.: Static magnetic properties of Co and Ru substituted Ba–Sr ferrite. Mater. Res. Bull. 43(1), 176–184 (2008)CrossRefGoogle Scholar
  31. 31.
    Zhao, H., Du, Y., Kang, L., Xu, P., Du, L., Sun, Z., Han, X.: Precursor-directed synthesis of quasi-spherical barium ferrite particles with good dispersion and magnetic properties. Cryst. Eng. Comm. 15(4), 808–815 (2013)CrossRefGoogle Scholar
  32. 32.
    Shannon, R.D.: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang, Y., Zhang, B., Xu, W., Shi, Y., Zhou, N., Lu, H.: Microwave absorption studies of W-hexaferrite prepared by co-precipitation/mechanical milling. J. Magn. Magn. Mater. 265(2), 119–122 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Lv, H., Ji, G., Liu, W., Zhang, H., Du, Y.: Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3(39), 10232–10241 (2015)CrossRefGoogle Scholar
  35. 35.
    Lv, H., Liang, X., Ji, G., Zhang, H., Du, Y.: Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Inter. 7(18), 9776–9783 (2015)CrossRefGoogle Scholar
  36. 36.
    Lu, B., Huang, H., Dong, X.L., Zhang, X.F., Lei, J.P., Sun, J.P., Dong, C.: Influence of alloy components on electromagnetic characteristics of core/shell-type Fe–Ni nanoparticles. J. Appl. Phys. 104(11), 114313 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Ma, Z., Liu, Q., Yuan, J., Wang, Z., Cao, C., Wang, J.: Analyses on multiple resonance behaviors and microwave reflection loss in magnetic Co microflowers. Phys. Status Solidi B 249(3), 575–580 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Liu, T., Xie, X., Pang, Y., Kobayashi, S.: Co/c nanoparticles with low graphitization degree: a high performance microwave-absorbing material. J. Mater. Chem. C 4(8), 1727–1735 (2016)CrossRefGoogle Scholar
  39. 39.
    Qi, X., Hu, Q., Cai, H., Xie, R., Bai, Z., Jiang, Y., Qin, S., Zhong, W., Du, Y.: Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties. Sci. Rep. 6, 37972 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    Xie, X., Pang, Y., Kikuchi, H., Liu, T.: The synergistic effects of the carbon coating and micropore structure on the microwave absorption properties of the Co/CoO nanoparticles. Phys. Chem. Chem. Phys. 18(44), 30507–30514 (2016)CrossRefGoogle Scholar
  41. 41.
    Alam, R.S., Moradi, M., Rostami, M., Nikmanesh, H., Moayedi, R., Bai, Y.: Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wenjia Xing
    • 1
    • 2
  • Xiao Long Liu
    • 2
  • Hua Wang
    • 1
    • 2
  • Jing Chen
    • 1
    • 2
  • Qingbo Fan
    • 1
    • 2
  • Qin Lei
    • 1
    • 2
  • Guangliang Xu
    • 2
  1. 1.State Key Laboratory of Environmental Friendly Energy MaterialsSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations