Study of (DNPs) x /CuTl-1223 Nanoparticle-Superconductor Composites

  • M. Mumtaz
  • Zafar Iqbal
  • M. Raza Hussain
  • Liaqat Ali
  • M. Waqee-ur-Rehman
  • M. Saqib
Original Paper
  • 52 Downloads

Abstract

Sol-gel and solid-state reaction methods were used to synthesize diamond nanoparticles (DNPs) and (DNPs) x /CuTl-1223 (x = 0, 0.25, 0.50, and 1.00 wt.%) nanoparticle-superconductor composites, respectively. Effects of these DNPs on structural, morphological, compositional, and transport properties of CuTl-1223 superconducting phase were investigated by different experimental techniques such as X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and resistivity versus temperature (R-T) measurements. The unchanged crystal structure and stoichiometry of host CuTl-1223 superconducting matrix with addition of DNPs gave evidence about the dispersion of nanoparticles at the grain boundaries of the host matrix, which may heal up the inter-granular voids and pores resulting in enhanced inter-grain connectivity. Critical transition temperature T c (0) and hole concentration of CuTl-1223 superconductor were observed to be increased with addition of DNPs up to a certain optimum value (i.e. x = 0.5 wt.%).

Keywords

(DNPs)x/CuTl-1223 nanoparticle-superconductor composites Diamonds nanoparticles Superconducting properties 

References

  1. 1.
    Ihara, H., Sekita, Y., Tateai, F., Khan, N.A., Ishida, K., Harashima, E., Kojima, T., Yamamoto, H., Tanaka, K., Tanaka, Y., Terada, N., Obara, H.: Superconducting properties of Cu1−xTlx-1223 [Cu1−xTlx(Ba, Sr)2Ca2Cu3O10−y] thin films. IEEE Trans. Appl. Supercond. 9, 1551 (1999)CrossRefGoogle Scholar
  2. 2.
    Khan, N.A., Sekita, Y., Tateai, F., Kojima, T., Ishida, K., Terada, N., Ihara, H.: Preparation of biaxially oriented CuTl-1234 thin films. Physica C 320, 39 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Khan, NA, Khurram, A.A., Mazhar, M.: Effects of post-annealing on the infrared active phonon modes of low anisotropy (γ = 5-11) Cu1−xTlxBa2Ca2Cu3O10−δ superconductor thin films. Physica C 407, 23 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Ekin, J.W., Larson, T.M., Hermanm, A.M., Sheng, Z.Z., Togano, K., Kumakura, H.: Double-step behavior of critical current vs. magnetic field in Y-, Bi- and Tl-based bulk high-Tc superconductors. Physica C 160, 489 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    Passai, J., Lahtinen, M., Eriksson, J.T., Polak, M.: Experimental study of the intergranular magnetization of (Bi, Pb)2Sr2Ca2Cu3O10+x superconductors. Physica C 259, 1 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Zhao, Y., Chen, C.H., Wang, J.S.: Flux pinning by NiO-induced nano-pinning centres in melt-textured YBCO superconductor. Supercond. Sci. Technol. 18, S43 (2004)CrossRefGoogle Scholar
  7. 7.
    Agranovski, I.E., Ilyushechkin, A.Y., Altman, I.S., Bostrom, T.E., Choi, M.: Methods of introduction of MgO nanoparticles into Bi-2212/Ag tapes. Physica C 434, 115 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Farbod, M., Batvandi, M.R.: Doping effect of Ag nanoparticles on critical current of YBa2Cu3O7−δ bulk superconductor. Physica C 471, 112 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Patnaik, S., Gurevich, A., Bu, S.D., Kaushik, S.D., Choi, J., Eom, C.B., Larbalestier, D.C.: Thermally activated current transport in MgB2 films. Phys. Rev. B 70, 064503 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Azzouz, F.B., Zouaoui, M., Mellekh, A., Annabi, M., Tendeloo, G.V., Saleem, M.B.: Flux pinning by Al-based nanoparticles embedded in YBCO: a transmission electron microscopic study. Physica C 455, 19 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Hamrita, A., Azzouz, F.B., Dachraoui, W., Saleem, M.B.: The effect of silver inclusion on superconducting properties of YBa2Cu3Oy prepared using planetary ball milling. J. Supercond. Nov. Magn. 26, 879 (2013)CrossRefGoogle Scholar
  12. 12.
    Dadras, S., Ghavamipour, M.: Investigation of the properties of carbon-base nanostructures doped YBa2Cu3O7−δ high temperature superconductor. Physica B 484, 13 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Ma, Z., Liu, Y., Hu, W., Gao, Z., Yua, L., Dong, Z.: The enhancement of Jc in nano SiC-doped MgB2 superconductors rapidly synthesized by activated sintering at low-temperature. Script. Mater. 61, 836 (2009)CrossRefGoogle Scholar
  14. 14.
    Mudgel, M., Awanaa, V.P.S., Kishana, H., Bhalla, G.L.: Significant improvement of flux pinning and irreversibility field in nano-carbon-doped MgB2 superconductor. Solid State Commun. 146, 330 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Rahul, S., Varghese, N., Vinod, K., Devadas, K.M., Thomas, S., Anees, P., Chattopadhyay, M.K., Roy, S.B., Syamaprasad, U.: Combined addition of nanodiamond and nano SiO2, an effective method to improve the in-field critical current density of MgB2 superconductor. Mater. Res. Bull. 46, 2036 (2011)CrossRefGoogle Scholar
  16. 16.
    Saoudel, A., Amira, A., Boudjadja, Y., Mahamdioua, N., Amirouche, L., Varilci, A., Altintas, S.P., Terzioglu, C.: Study of the thermo-magnetic fluctuations in carbon nano-tubes added Bi-2223 superconductors. Physica B 429, 33 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Khan, N.A., Aziz, S: Single and multi-walled carbon nanotubes doped (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ superconductors. J. Alloys Compd. 538, 183 (2012)CrossRefGoogle Scholar
  18. 18.
    Cheng, C.H., Zhang, H., Zhao, Y., Feng, Y., Rui, X.F., Munroe, P., Zeng, H.M., Koshizuka, N., Murakami, M.: Doping effect of nano-diamond on superconductivity and flux pinning in MgB2. Supercond. Sci. Technol. 16, 1182 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Soltanian, S., Horvat, J., Wang, X.L., Munroe, P., Dou, S.X.: Effect of nano-carbon particle doping on the flux pinning properties of MgB2 superconductor. Physica C 390, 185 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Zou, Q., Wang, M.Z., Li, Y.G.: Analysis of the nanodiamond particle fabricated by detonation. J. Exp. Nanosci. 5, 319 (2010)CrossRefGoogle Scholar
  21. 21.
    Habanjar, K., Barakat, M.M.E., Awad, R.: Investigation of physical and mechanical properties of (BaSnO3)x(Bi,Pb)-2223 composite. J. Phys. Conf. Ser. 869, 012030 (2017)CrossRefGoogle Scholar
  22. 22.
    Qasim, I., Waqee-ur-Rehman, M., Mumtaz, M., Nadeem, K.: Role of Co nanoparticles in CuTl-1223 superconductor. Ceram. Int. 42, 1122 (2016)CrossRefGoogle Scholar
  23. 23.
    Hafiz, M., Abd-Shukor, R.: Effects of nano-sized NiF2 addition in Bi1.4Pb0.6Sr2Ca2Cu3O10 + δ superconductor. Adv. Mater. Res. 895, 87 (2014)CrossRefGoogle Scholar
  24. 24.
    Mohammad, N.H., Abou-Aly, A.I., Awad, R., Ibrahim, I.H., Roumie, M., Rekaby, M.: Mechanical and electrical properties of (Cu0.5Tl0.5)-1223 phase added with nano-Fe2O3. J. Low Temp. Phys. 172, 234 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Zhang, J., Liu, F., Cheng, G., Shang, J., Liu, J., Cao, S., Liu, Z.: Electron structure and vacancy properties and Al-substitution dependence of the positron life time in Y:1:2:3 superconducting ceramics. Phy. Lett. A 201, 70 (1195)CrossRefGoogle Scholar
  26. 26.
    Feng, S.J., Ma, J., Zhou, H.D., Li, G., Shi, L., Liu, Y., Fang, J., Li, X.G.: Energy dissipation in Bi2Sr2CaCu2O8+δ single crystal. Physica C 386, 22 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Wu, H.Y., Ruan, K.Q., Yin, J., Huang, S.L., Lv, Z.M., Li, M., Cao, L.Z.: Effect of K and Nd substitutions on superconductivity of Bi2223 superconductors. Supercond. Sci. Technol. 20, 1189 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Zelati, A., Amirabadizadeh, A., Kompany, A., Salamati, H., Sonier, J.: Effects of Dy2O3 nanoparticle addition on structural and superconducting properties of BSCCO. Ind. J. Sci. Technol. 7, 123 (2014)Google Scholar
  29. 29.
    Bilgili, O., Selamet, Y., Kocabas, K.: Effects of Li substitution in Bi-2223 superconductors. J. Supercond. Nov. Magn. 21, 439 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. Mumtaz
    • 1
  • Zafar Iqbal
    • 2
  • M. Raza Hussain
    • 2
  • Liaqat Ali
    • 1
  • M. Waqee-ur-Rehman
    • 1
  • M. Saqib
    • 2
  1. 1.Materials Research Laboratory, Department of Physics, Faculty of Basic and Applied Sciences (FBAS)International Islamic University (IIU)IslamabadPakistan
  2. 2.Department of PhysicsRiphah International UniversityIslamabadPakistan

Personalised recommendations