Magnetism in Boron Nitride Monolayer Induced by Cobalt or Nickel Doping

  • M. Wang
  • S. Tang
  • J. Ren
  • B. Wang
  • Y. Han
  • Y. Dai
Original Paper


We have investigated the electronic structure and magnetic properties of cobalt (Co)- or nickel (Ni)-doped hexagonal boron nitride (h-BN) monolayer using density functional theory calculations. The h-BN monolayer without any doping is a nonmagnetic insulator. Our studies show that isolated Co or Ni atom can both induce the local magnetic state in h-BN monolayer. And the impurity energy levels will be formed in the band gap. Results of our first-principle calculations reveal that isolated Co atom can result in a magnetic moment of 3.57 μ B, while the Ni atom is 0.87 μ B. And the magnetic moments mainly come from d orbitals of the doped atoms. The studies of magnetic coupling show that the two Co atoms at different distances in h-BN monolayer do not always couple ferromagnetically. When the distances are 2.504 and 6.625 Å, the spins induced by the two Co atoms will form antiferromagnetic ground states. While the two Ni atoms at different distances in the monolayer always couple ferromagnetically. So our results imply that the Ni-doped h-BN is more suitable for spintronic material than Co doping. These results are useful for spintronic application.


h-BN monolayer Magnetism Co doped Ni doped First principle 



This work was supported by Science and Technology Research Project of Hebei higher education, China (grant no. ZD2016042) the Natural Science Foundation of Hebei, China (grant no. F2017208031), and the Natural Science Foundation of China (grant no. 51674096)


  1. 1.
    Fert, A.: Nobel lecture: origin, development, and future of spintronics. Rev. Mod. Phys. 80(4), 1517–1530 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Z̆utić, I., Fabian, J., Sarma, S.D.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76 (2), 323–410 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Wadley, P., Howells, B., Z̆elezný, J., Andrews, C., Hills, V., Campion, R.P., Novák, V., Olejník, K., Maccherozzi, F., Dhesi, S.S., Martin, S.Y., Wagner, T., Wunderlich, J., Freimuth, F., Mokrousov, Y., Kunes̆, J., Chauhan, J.S., Grzybowski, M.J., Rushforth, A.W., Edmonds, K.W., Gallagher, B.L., Jungwirth, T.: Electrical switching of an antiferromagnet. Science 351(6273), 587–590 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Zhou, J., Wang, Q., Sun, Q., Jena, P.: Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. Phy. Rev. B. 81(085442), 1–7 (2010)Google Scholar
  5. 5.
    Azevedo, S., Kaschny, J.R., de Castilho, C.M.C., de Brito Mota, F.: Corrigendum: theoretical investigation of native defects in a boron nitride monolayer. Nanotechnology 18(495707), 1–4 (2007)Google Scholar
  6. 6.
    Jin, C., Lin, F., Suenaga, K., Iijima, S.: Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102(195505), 1–4 (2009)Google Scholar
  7. 7.
    Blase, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28(5), 335–340 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    Rubio, A., Corkill, J.L., Cohen, M. L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B. 49 (7), 5081–5084 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(22), 666–669 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Greber, T.: Graphene and hexagonal boron nitride layers: nanostructures with 3 bond hierarchy levels. e-J. Surf. Sci. Nanotech. 8, 62–64 (2010)CrossRefGoogle Scholar
  11. 11.
    Molla, M., Behbahani, T.J.: Adsorption of N2, O2, CO, and CO2 on open ends and surface of single wall carbon nano-tubes: a computational nuclear magnetic resonance and nuclear quadrupole resonance study. J. Mol. Liq. 222, 717–732 (2016)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z.F., Zhou, T.G., Zuo, X.: First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta. Phys. Sin. 62(8), 1–7 (2013)Google Scholar
  13. 13.
    Wu, R.Q., Liu, L., Peng, G.W., Feng, Y.P.: Magnetism in BN nanotubes induced by carbon doping. Appl. Phys. Lett. 86(122510), 1–3 (2005)Google Scholar
  14. 14.
    Ooi, N., Rairkar, A., Lindsley, L., Adams, J.B.: Electronic structure and bonding in hexagonal boron nitride. J. Phys.: Condens. Matter. 18, 97–115 (2006)ADSGoogle Scholar
  15. 15.
    Azevedo, S., Kaschny, J.R., de Castilho, C.M.C., de Brito Mota, F.: Electronic structure of defects in a boron nitride monolayer. Eur. Phys. J. B. 67, 507–512 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Matos, M.J.S., Chacham, H.: Graphene-boron nitride superlattices: the role of point defects at the BN layer. Nanotechnology 25(165705), 1–6 (2014)Google Scholar
  17. 17.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54(16), 11169–11186 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59(3), 1758–1775 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Pei, G., Xia, C., Wu, B., Wang, T., Zhang, L., Dong, Y., Xu, J.: Studies of magnetic interactions in Ni-doped ZnO from first-principles calculations. Comput. Mater. Sci. 43, 489–494 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Information Science and EngineeringHebei University of Science and TechnologyShijiazhuangChina
  2. 2.School of ScienceHebei University of Science and TechnologyShijiazhuangChina
  3. 3.Department of Construction EngineeringHebei Vocational College of Politics and LawShijiazhuangChina
  4. 4.School of Material Science and EngineeringHebei University of Science and TechnologyShijiazhuangChina

Personalised recommendations