Advertisement

Dependence of the Magnetic Transition Temperatures T N 1 and T N 2 and Magnetization Plateau of the 2D Checkerboard Lattice Structure with the Superblock (N,N)

  • A. Jabar
  • R. Masrour
Original Paper
  • 30 Downloads

Abstract

Magnetic properties of the 2D checkerboard lattice structure with the superblock (N,N) were studied using Monte Carlo simulation based on the Ising model. Thermal magnetization and magnetic susceptibility of 2D checkerboard lattice with several superblocks are given. Two magnetic anomalies at collinear-to-spiral transition temperature t C1 and transition temperature t C2have been determined. We discuss the effect of exchange interactions and superblocks on 2D checkerboard lattice. Magnetic hysteresis cycle of 2D checkerboard lattice for several superblocks have been shown. Superparamagnetic behaviour has been observed. Magnetization plateau, visible as anomalies in magnetic hysteresis, is one of the hallmarks of frustrated magnetism.

Keywords

2D checkerboard lattice structure Ising model Monte Carlo simulation Magnetic hysteresis cycle Magnetization plateau 

References

  1. 1.
    Greedan, J.: J. Mater. Chem. 11, 37 (2001)CrossRefGoogle Scholar
  2. 2.
    Quantum magnetism, edited by U. Schollwock, J. Richter, D. Farnell, and R. Bishop, Lecture notes in physics. 645, Springer, New York (2004)Google Scholar
  3. 3.
    de Wijn, A.S., Hess, B., Fine, B.V.: J. Phys. A: Math. Theor. 46, 254012 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Stosic, T., Stosic, B., Milosevic, S., Stanley, H. E.: Physica A 170, 31–42 (1990)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Lee1, S.B., Kim, J.S.: Phys. Procedia 34, 84–89 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Kikuchi, H., Kunieda, K., Asano, T., Fujii, Y., Inagaki, Y., Matsuo, A., Kindo, K.: Phys. Procedia. 75, 653–658 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Horigane, K., Yamada, K., Hiraka, H., Akimitsua, J.: J. Magn. Magn. Mater. 310, 774–776 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Yadav, U. K., Maitra, T., Singh, I.: Solid State Commun. 164, 32–37 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Lacroix, C.: Physica B 404, 3038–3041 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Agrestini, S., Mazzoli, C., Bombardi, A., Lees, M.R.: Phys. Rev. B 77, 140403 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Barabanov, A. F., Beresovsky, V. M.: Phys. Lett. A 186, 175–178 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Poilblanc, D., Weber, C., Mila, F., Sigrist, M.: J. Magn. Magn. Mater. 310, 523–525 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Zaliznyak, I. A., Hill, J. P., Tranquada, J. M., Erwin, R., Moritomo, Y.: Phys. Rev. Lett. 85, 4353 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Moura, A. R.: J. Magn. Magn. Mater. 394, 60–66 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Wesselinowa, J M, Apostolova, I: Phys. Condens. Matter. 19, 406235 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Materials, Processes, Environment and Quality, National School of Applied SciencesCady Ayyed UniversitySafiMorocco

Personalised recommendations