Vibrational, Elastic Properties and Sound Velocities of MgTi2O4 Spinel

Original Paper
  • 135 Downloads

Abstract

Zone-centre phonon frequencies, elastic properties and sound velocities along high-symmetry directions and Debye temperature of MgTi2O4 spinel is calculated using rigid ion model. The interatomic interactions up to third nearest neighbours are also calculated. The main results of the present paper reveals that the tetrahedral bonding is stronger than the octahedral bonding. Calculated results are compared with previously available experimental and theoretical data. It is observed that the obtained results are in good agreement with the available results in literature.

Keywords

Tetrahedral Octahedral Zone-centre Spinel structure 

References

  1. 1.
    Johnston, D.C., Prakash, H., Zachariasen, W.H., Viswanathan, R.: High temperature superconductivity in the Li-Ti-O ternary system. Mater. Res. Bull. 8, 777 (1973)CrossRefGoogle Scholar
  2. 2.
    Kondo, S., Johnston, D.C., Swenson, C.A., Borsa, F., Mahajan, A.V., Miller, L.L., Gu, T., Goldman, A.I., Maple, M.B., Gajewski, D.A., Freeman, E.J., Dilley, N.R., Dickey, R.P., Merrin, J., Kojima, K., Luke, G.M., Uemura, Y.J., Chmaissem, O., Jorgensen, J.D.: LiV2O4: a heavy fermion transition metal oxide. Phys. Rev. Lett. 78, 3729 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Fujiwara, N., Yasuoka, H., Ueda, Y.: Anomalous spin fluctuation in vanadium spinel LiV2O4 studied by 7Li-NMR. Phys. Rev. B 57, 3539 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Urano, C., Nohara, M., Kondo, S., Sakai, F., Takagi, H., Shiraki, T., Okubo, T.: LiV2O4 spinel as a heavy mass Fermi liquid: anomalous transport and role of geometrical frustration. Phys. Rev. Lett. 85, 1052 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Liu, J., Chen, L., Liu, Y., Dong, H.N., Li, L.: Influence of F-ligands on half-metallicity of cubic spinel materials. J. Super Cond. Nov. Magn. 23, 961–965 (2010)CrossRefGoogle Scholar
  6. 6.
    Gurgel, T.T., Buzinaro, M.A., Moreno, N.O.: Magnetization study in CuCr2O4 spinel oxide. J. Super Cond. Nov. Magn. 26, 2557–2559 (2013)CrossRefGoogle Scholar
  7. 7.
    Matsuno, K., Katsufuji, T., Mori, S., Moritomo, Y., Machida, A., Nishibori, E., Takata, M., Sakata, M., Yamamoto, N., Takagi, H.: Charge ordering in the geometrically frustrated spinel AlV2O4. J. Phys. Soc. Jpn. 70, 1456 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Isobe, M., Ueda, Y.: Observation of phase transition from metal to spin-singlet insulator in MgTi2O4 with S = 1/2 Pyrochlore Lattice. J. Phys. Soc. Jpn. 71, 1848 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Schmidt, M., Ratcliff, W., Radaelli, P.G., Refson, K., Harrison, N.M., Cheong, S-W.: Spin singlet formation in MgTi2O4: evidence of a helical dimerization pattern. Phys. Rev. Lett. 92, 056402 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Brik, M.G., Suchocki, A., Kaminska, A.: Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements. Inorg. Chem. 53(10), 5088–5099 (2014)CrossRefGoogle Scholar
  11. 11.
    Leoni, S., Yaresko, A.N., Perkins, N., Rosner, H., Craco, L.: Orbital- spin order and the origin of the structural distortion in MgTi2O4. Phys. Rev. B 78, 125105 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Ono, H., Nakajima, K., Agawa, S., Ibuta, T., Maruo, R., Usui, T.: Formation conditions of Ti2O3, MgTi2O4, Mg2TiO4, and MgAl2O4 in Ti-Mg-Al complex deoxidation of molten iron. Steel Res. Int. 86, 241–251 (2015)CrossRefGoogle Scholar
  13. 13.
    Lee, S.-H., Takagi, H., Louca, D., Matsuda, M., Ji, S., Ueda, H., Ueda, Y., Katsufuji, T., Chung, J.-H., Park, S., Cheong, S-W., Broholm, C.: Frustrated magnetism and cooperative phase transitions in spinels. J. Phys. Soc. 79, 011004 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Fujiwara, H., Ishige, Y., Mizokawa, T., Sasaki, T., Isobe, M., Ueda, Y.: Valence instability and photochemical reaction at surface of strongly correlated MgTi2O4. APL Mater. 1, 022110 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Popovic, Z.V., Marzi, G.D., Konstantinovic, M.J., Cantarero, A., Mitrovic, Z.D., Isobe, M., Ueda, Y.: Phonon properties of spinel oxide MgTi2O4 with S = 1/2 pyrochlore lattice. Phys. Rev. B 68, 224302 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Ewald, P.P.: Z. Krist. 56, 129 (1921)Google Scholar
  17. 17.
    Kushwaha, A.K.: Zone-center phonon frequencies for superconducting spinel LiTi2O4. Physica B 403, 3535 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Kushwaha, A.K.: Vibrational and elastic properties of aluminate spinel MgAl2O4. Physica B 405, 2795–2798 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Kushwaha, A.K.: Vibrational, elastic properties and sound velocities of zinc aluminate spinel. Comput. Mater. Sci. 69, 505–509 (2013)CrossRefGoogle Scholar
  20. 20.
    Born, M.H.: Dynamical Theory of Crystal Lattices. Oxford University, Oxford (1988)MATHGoogle Scholar
  21. 21.
    Gao, X.P., Jiang, Y.H., Zhou, R., Feng, J.: Stability and elastic properties of Y–C binary compounds investigated by first principles calculations. Alloys Compd. 587, 819–826 (2014)CrossRefGoogle Scholar
  22. 22.
    Huang, B., Duan, Y.H., Sun, Y., Peng, M.J.: Chen. S.: Electronic structures, mechanical and thermodynamic properties of cubic alkaline-earth hexaborides from first principles calculations. J. Alloys Compd. 635, 213–224 (2015)CrossRefGoogle Scholar
  23. 23.
    Wdowik, U.P., Parlinski, K., Siegel, A.: Elastic properties and high-pressure behavior of MgAl2O4 from ab initio calculations. J. Phys. Chem. Solids 67, 1477–1483 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and Their Measurement. McGraw-Hill, New York (1973)Google Scholar
  25. 25.
    Pugh, S.F. XCII.: Relations between the elastic moduli and the plastic properties of polycrystalline püre metals. Philos. Mag. 45, 823–843 (1954)CrossRefGoogle Scholar
  26. 26.
    Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: Elastic constants and elastic moduli of metals and insulators (Naukova Dumka Kiev), p. 60 (1982)Google Scholar
  27. 27.
    Huang, B., et al.: J. Alloys Compd. 587, 819–826 (2014)CrossRefGoogle Scholar
  28. 28.
    Lewandowski, J.J., Wang, W.H., Greer, A.L.: Intrinsin plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77–87 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesAdiyaman UniversityAdiyamanTurkey
  2. 2.Department of PhysicsK.N. Govt. P.G. CollegeGyanpurIndia

Personalised recommendations