Advertisement

Density Functional Theory Study on Electronic Structures and Magnetism for Nitrogen-Doped ZnS

  • S. W. Fan
  • X. N. Huang
  • G. Y. Gao
Original Paper

Abstract

Using the full-potential linearized augmented plane wave method, together with the generalized gradient approximation and modified Becke-Johnson as correlation potential, the electronic structures and magnetism for nitrogen-doped ZnS are investigated. Based on the generalized gradient approximation, calculations show nitrogen-substituting sulfur (NS) would induce the ZnS to be paramagnetic metal. As the band gap increasing to the experimental results (obtained by the modified Becke-Johnson potential), the NS defects would induce the ZnS to be a ferromagnetic metal. The total magnetic moment for ZnS supercell with single NS defect is 0.85 μ B. Positive chemical pair interactions imply that NS defects would form homogeneous distribution in ZnS host. Sulfur vacancies would give rise to the ZnS with NS defects system losing the magnetism. Moderate formation energy (0.71 eV) indicates ZnS with NS defects could be fabricated experimentally.

Keywords

Magnetism Electronic structures Modified Becke-Johnson potential 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant nos. 11174179 and 11474113). We also thank the National Supercomputing Center in Shenzhen for providing the Materials Studio and computational resources.

References

  1. 1.
    Ohno, H.: Science 281, 951 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., Ohtani, K.: Nature 408, 944 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Hong, N. H., Sakai, J., Prellier, W., Hassini, A., Ruyter, A., Gervais, F.: Phys. Rev. B 70, 195204 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Gupta, A., Cao, H. T., Parekh, K., Rao, K. V., Raju, A. R., Waghmare, U. V.: J. Appl. Phys. 101, 09N513 (2007)CrossRefGoogle Scholar
  5. 5.
    Pan, F., Song, C., Liu, X. J., Yang, Y. C., Zeng, F.: Mat. Sci. Eng. R 62, 1 (2008)CrossRefGoogle Scholar
  6. 6.
    Liu, C., Yun, F., Morko, H.: J. Mater. Sci.: Mater. Electron. 16, 555 (2005)Google Scholar
  7. 7.
    Dietl, T.: Nature Mater. 9, 965 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Zhou, S. Q., Xu, Q. Y., Potzger, K., Talut, G., Grötzschel, R., Fassbender, J., Vinnichenko, M., Grenzer, J., Helm, M., Hochmuth, H., Lorenz, M., Grundmann, M., Schmidt, H.: Appl. Phys. Lett. 93, 232507 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Pan, H., Yi, J. B., Shen, L., Wu, R. Q., Yang, J. H., Lin, J. Y., Feng, Y. P., Ding, J., Van, L. H., Yin, J. H.: Phys. Rev. Lett. 99, 127201 (2007)Google Scholar
  10. 10.
    Green, R. J., Boukhvalov, D. W., Kurmaev, E. Z., Finkelstein, L. D., Ho, H. W., Ruan, K. B., Wang, L., Moewes, A.: Phys. Rev. B 86, 115212 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Zhao, C., Xu, Z., Wang, H., Wei, J., Wang, W., Bai, X., Wang, E.: Adv. Funct. Mater. 24, 5985 (2014)CrossRefGoogle Scholar
  12. 12.
    Yu, C. F., Chen, S. Y., Sun, S. J., Chou, H.: J. Phys. D: Appl. Phys. 42, 35001 (2009)CrossRefGoogle Scholar
  13. 13.
    Fan, S. W., Huang, X. N., Yao, K. L.: J. Appl. Phys. 121, 073905 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Fan, S. W., Wang, R. G., Xu, P.: EPL 115, 67003 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Fan, S. W., Li, W. B., Huang, X. N., Li, Z. B., Pan, L. Q.: Appl. Phys. Express 8, 045802 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Fan, S. W., Yao, K. L., Liu, Z. L.: Appl. Phys. Lett. 94, 152506 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Peng, X. Y., Ahuja, R.: Appl. Phys. Lett. 94, 102504 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Fang, X. S., Bando, Y., Gautam, U. K., Zhai, T. Y., Zeng, H. B., Xu, X. J., Liao, M. Y., Golberg, D.: Crit. Rev. Solid State Mater. Sci. 34, 190 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Jia, X., Qin, M., Yang, W.: J. Phys. D: Appl. Phys. 42, 235001 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Long, R., English, N. J.: Phys. Rev. B 80, 115212 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Zhang, C. W., Yan, S. S., Wang, P. J., Zhang, Z.: Chem. Phys. Lett. 496, 46 (2010)CrossRefGoogle Scholar
  22. 22.
    Perdew, J. P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Cohen, A. J., Mori-Sánchez, P., Yang, W. T.: Chem. Rev. 112, 289 (2012)CrossRefGoogle Scholar
  24. 24.
    Wu, H., Stroppa, A., Sakong, S., Picozzi, S., Scheffler, M., Kratzer, P.: Phys. Rev. Lett. 105, 267203 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Asimov, V. I., Zaanen, J., Andersen, O. K.: Phys. Rev. B 44, 943 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    Filippetti, A., Spaldin, N. A.: Phys. Rev. B 67, 125109 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Pardo, V., Pickett, W.: Phys. Rev. B 78, 134427 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Droghetti, A., Pemmaraju, C., Sanvito, S.: Phys. Rev. B 78, 140404 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Franklin, L., Ekuma, C. E., Zhao, G. L., Bagayoko, D.: J. Phys. Chem. Solids 74, 729 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Guo, S. D., Liu, B. G.: EPL 93, 47006 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Fan, S. W., Ding, L. J., Wang, Z. L., Yao, K. L.: Appl. Phys. Lett. 102, 022404 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Fan, S. W., Huang, X. P., Ding, L. J., Wang, Z. L., Yao, K. L.: Comput. Mater. Sci. 82, 345 (2014)CrossRefGoogle Scholar
  34. 34.
    Zhao, Y. H., Li, Y. F., Liu, Y.: Appl. Phys. Lett. 100, 092407 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Fan, S. W., Song, T., Yao, K. L.: Comput. Mater. Sci. 106, 45 (2015)CrossRefGoogle Scholar
  36. 36.
    Schwarz, K., Blaha, P., Madsen, G. K. H.: Comput. Phys. Commun. 147, 71 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., Payne, M. C.: Z. Kristallogr. 220, 567 (2005)Google Scholar
  38. 38.
    Hamad, S., Cristol, S., Catlow, C.R.A.: J. Phys. Chem. B 106, 11002 (2002)CrossRefGoogle Scholar
  39. 39.
    Koller, D., Tran, F., Blaha, P.: Phys. Rev. B 83, 195134 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Zhang, Y. B., Zhang, J. W., Gao, W., Abtew, T. A., Wang, Y. W., Zhang, P. H., Zhang, W. Q.: J. Chem. Phys. 139, 184706 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Shen, L., Wu, R. Q., Pan, H., Peng, G. W., Yang, M., Sha, Z. D., Feng, Y. P.: Phys. Rev. B 78, 073306 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Seike, M., Dinh, V. A., Fukushima, T., Sato, K., Katayama-Yoshida, H.: Jpn. J. Appl. Phys. 51, 050201 (2012)ADSGoogle Scholar
  43. 43.
    Zunger, A.: Appl. Phys. Lett. 83, 57 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Zhang, S. B., Northrup, J. E.: Phys. Rev. Lett. 67, 2339 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    Partin, D. E., Williams, D.J., Keeffe, M. O.: J. Solid State Chem. 132, 56 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsChina Three Gorges UniversityYichangChina
  2. 2.School of PhysicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations