Skip to main content
Log in

Density Functional Theory Study on Electronic Structures and Magnetism for Nitrogen-Doped ZnS

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Using the full-potential linearized augmented plane wave method, together with the generalized gradient approximation and modified Becke-Johnson as correlation potential, the electronic structures and magnetism for nitrogen-doped ZnS are investigated. Based on the generalized gradient approximation, calculations show nitrogen-substituting sulfur (NS) would induce the ZnS to be paramagnetic metal. As the band gap increasing to the experimental results (obtained by the modified Becke-Johnson potential), the NS defects would induce the ZnS to be a ferromagnetic metal. The total magnetic moment for ZnS supercell with single NS defect is 0.85 μ B. Positive chemical pair interactions imply that NS defects would form homogeneous distribution in ZnS host. Sulfur vacancies would give rise to the ZnS with NS defects system losing the magnetism. Moderate formation energy (0.71 eV) indicates ZnS with NS defects could be fabricated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ohno, H.: Science 281, 951 (1998)

    Article  ADS  Google Scholar 

  2. Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., Ohtani, K.: Nature 408, 944 (2000)

    Article  ADS  Google Scholar 

  3. Hong, N. H., Sakai, J., Prellier, W., Hassini, A., Ruyter, A., Gervais, F.: Phys. Rev. B 70, 195204 (2004)

    Article  ADS  Google Scholar 

  4. Gupta, A., Cao, H. T., Parekh, K., Rao, K. V., Raju, A. R., Waghmare, U. V.: J. Appl. Phys. 101, 09N513 (2007)

    Article  Google Scholar 

  5. Pan, F., Song, C., Liu, X. J., Yang, Y. C., Zeng, F.: Mat. Sci. Eng. R 62, 1 (2008)

    Article  Google Scholar 

  6. Liu, C., Yun, F., Morko, H.: J. Mater. Sci.: Mater. Electron. 16, 555 (2005)

    Google Scholar 

  7. Dietl, T.: Nature Mater. 9, 965 (2010)

    Article  ADS  Google Scholar 

  8. Zhou, S. Q., Xu, Q. Y., Potzger, K., Talut, G., Grötzschel, R., Fassbender, J., Vinnichenko, M., Grenzer, J., Helm, M., Hochmuth, H., Lorenz, M., Grundmann, M., Schmidt, H.: Appl. Phys. Lett. 93, 232507 (2008)

    Article  ADS  Google Scholar 

  9. Pan, H., Yi, J. B., Shen, L., Wu, R. Q., Yang, J. H., Lin, J. Y., Feng, Y. P., Ding, J., Van, L. H., Yin, J. H.: Phys. Rev. Lett. 99, 127201 (2007)

  10. Green, R. J., Boukhvalov, D. W., Kurmaev, E. Z., Finkelstein, L. D., Ho, H. W., Ruan, K. B., Wang, L., Moewes, A.: Phys. Rev. B 86, 115212 (2012)

    Article  ADS  Google Scholar 

  11. Zhao, C., Xu, Z., Wang, H., Wei, J., Wang, W., Bai, X., Wang, E.: Adv. Funct. Mater. 24, 5985 (2014)

    Article  Google Scholar 

  12. Yu, C. F., Chen, S. Y., Sun, S. J., Chou, H.: J. Phys. D: Appl. Phys. 42, 35001 (2009)

    Article  Google Scholar 

  13. Fan, S. W., Huang, X. N., Yao, K. L.: J. Appl. Phys. 121, 073905 (2017)

    Article  ADS  Google Scholar 

  14. Fan, S. W., Wang, R. G., Xu, P.: EPL 115, 67003 (2016)

    Article  ADS  Google Scholar 

  15. Fan, S. W., Li, W. B., Huang, X. N., Li, Z. B., Pan, L. Q.: Appl. Phys. Express 8, 045802 (2015)

    Article  ADS  Google Scholar 

  16. Fan, S. W., Yao, K. L., Liu, Z. L.: Appl. Phys. Lett. 94, 152506 (2009)

    Article  ADS  Google Scholar 

  17. Peng, X. Y., Ahuja, R.: Appl. Phys. Lett. 94, 102504 (2009)

    Article  ADS  Google Scholar 

  18. Fang, X. S., Bando, Y., Gautam, U. K., Zhai, T. Y., Zeng, H. B., Xu, X. J., Liao, M. Y., Golberg, D.: Crit. Rev. Solid State Mater. Sci. 34, 190 (2009)

    Article  ADS  Google Scholar 

  19. Jia, X., Qin, M., Yang, W.: J. Phys. D: Appl. Phys. 42, 235001 (2009)

    Article  ADS  Google Scholar 

  20. Long, R., English, N. J.: Phys. Rev. B 80, 115212 (2009)

    Article  ADS  Google Scholar 

  21. Zhang, C. W., Yan, S. S., Wang, P. J., Zhang, Z.: Chem. Phys. Lett. 496, 46 (2010)

    Article  Google Scholar 

  22. Perdew, J. P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. Cohen, A. J., Mori-Sánchez, P., Yang, W. T.: Chem. Rev. 112, 289 (2012)

    Article  Google Scholar 

  24. Wu, H., Stroppa, A., Sakong, S., Picozzi, S., Scheffler, M., Kratzer, P.: Phys. Rev. Lett. 105, 267203 (2010)

    Article  ADS  Google Scholar 

  25. Asimov, V. I., Zaanen, J., Andersen, O. K.: Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  26. Filippetti, A., Spaldin, N. A.: Phys. Rev. B 67, 125109 (2003)

    Article  ADS  Google Scholar 

  27. Pardo, V., Pickett, W.: Phys. Rev. B 78, 134427 (2008)

    Article  ADS  Google Scholar 

  28. Droghetti, A., Pemmaraju, C., Sanvito, S.: Phys. Rev. B 78, 140404 (2008)

    Article  ADS  Google Scholar 

  29. Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  30. Franklin, L., Ekuma, C. E., Zhao, G. L., Bagayoko, D.: J. Phys. Chem. Solids 74, 729 (2013)

    Article  ADS  Google Scholar 

  31. Guo, S. D., Liu, B. G.: EPL 93, 47006 (2011)

    Article  ADS  Google Scholar 

  32. Fan, S. W., Ding, L. J., Wang, Z. L., Yao, K. L.: Appl. Phys. Lett. 102, 022404 (2013)

    Article  ADS  Google Scholar 

  33. Fan, S. W., Huang, X. P., Ding, L. J., Wang, Z. L., Yao, K. L.: Comput. Mater. Sci. 82, 345 (2014)

    Article  Google Scholar 

  34. Zhao, Y. H., Li, Y. F., Liu, Y.: Appl. Phys. Lett. 100, 092407 (2012)

    Article  ADS  Google Scholar 

  35. Fan, S. W., Song, T., Yao, K. L.: Comput. Mater. Sci. 106, 45 (2015)

    Article  Google Scholar 

  36. Schwarz, K., Blaha, P., Madsen, G. K. H.: Comput. Phys. Commun. 147, 71 (2002)

    Article  ADS  Google Scholar 

  37. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., Payne, M. C.: Z. Kristallogr. 220, 567 (2005)

    Google Scholar 

  38. Hamad, S., Cristol, S., Catlow, C.R.A.: J. Phys. Chem. B 106, 11002 (2002)

    Article  Google Scholar 

  39. Koller, D., Tran, F., Blaha, P.: Phys. Rev. B 83, 195134 (2011)

    Article  ADS  Google Scholar 

  40. Zhang, Y. B., Zhang, J. W., Gao, W., Abtew, T. A., Wang, Y. W., Zhang, P. H., Zhang, W. Q.: J. Chem. Phys. 139, 184706 (2013)

    Article  ADS  Google Scholar 

  41. Shen, L., Wu, R. Q., Pan, H., Peng, G. W., Yang, M., Sha, Z. D., Feng, Y. P.: Phys. Rev. B 78, 073306 (2008)

    Article  ADS  Google Scholar 

  42. Seike, M., Dinh, V. A., Fukushima, T., Sato, K., Katayama-Yoshida, H.: Jpn. J. Appl. Phys. 51, 050201 (2012)

    ADS  Google Scholar 

  43. Zunger, A.: Appl. Phys. Lett. 83, 57 (2003)

    Article  ADS  Google Scholar 

  44. Zhang, S. B., Northrup, J. E.: Phys. Rev. Lett. 67, 2339 (1991)

    Article  ADS  Google Scholar 

  45. Partin, D. E., Williams, D.J., Keeffe, M. O.: J. Solid State Chem. 132, 56 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (grant nos. 11174179 and 11474113). We also thank the National Supercomputing Center in Shenzhen for providing the Materials Studio and computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S.W., Huang, X.N. & Gao, G.Y. Density Functional Theory Study on Electronic Structures and Magnetism for Nitrogen-Doped ZnS. J Supercond Nov Magn 31, 1443–1448 (2018). https://doi.org/10.1007/s10948-017-4346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4346-4

Keywords

Navigation