Contribution to Spin Tubes Study

Original Paper
  • 30 Downloads

Abstract

In this work, we aim to study both analytically and numerically the behavior of triangular spin tubes made by three chains which are connected to one another by exchange, in the presence of single-ion anisotropy. By diagonalizing the spin Hamiltonian, the partition function was exactly calculated within the transfer matrix approach and several relevant physical quantities were derived and analyzed. Depending on the sign and strengths of the exchange and anisotropy constants, the system reveals a rich variety of features such as frustration and steplikes in the magnetization curves arising from both geometry and conflicting interactions.

Keywords

Spin tube Spin Hamiltonian Exchange coupling Single-ion anisotropy Magnetic entropy Frustration Modeling Simulation 

References

  1. 1.
    Sakai, T., Sato, M., Okamoto, K., Okunishi, K., Itoi, C.: J. Phys. Condens. Matter 22, 403201 (2010)CrossRefGoogle Scholar
  2. 2.
    Schnack, J., Nojiri, H., Kogerler, P., Cooper, G.J.T., Cronin, L.: Magnetic characterization of the frustrated three-leg ladder compound [(CuCl2tachH)3Cl]Cl2. Phys. Rev. B 70, 174420 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Charrier, D., Capponi, S., Oshikawa, M., Pujol, P.: Phys. Rev. B 82, 075108 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Nishimoto, S., Arikawa, M.: Phys. Rev. B 78, 054421 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Fouet, J.B., Lauchli, A., Pilgram, S., Noack, R.M., Mila, F.: Phys. Rev. B 73, 014409 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Plat, X.: In: “Etude de modèles magnétiques frustrés sous champ en basses dimensions. Electrons fortement corrélés”, PhD thesis, Toulouse University. 37 (and references therein) and https://tel.archives-ouvertes.fr/tel-01091204 (2014)
  7. 7.
    Baxter, R.: In: Exactly Solved Models in Statistical Mechanics. Academic, New York (1982)MATHGoogle Scholar
  8. 8.
    Blundell, S.J.: In: Magnetism in condensed matter. Oxford Master Series in Condensed Matter Physics. Oxford University Press, p. 26 (2001)Google Scholar
  9. 9.
    Ekiz, C.: J. Magn. Magn. Mater. 284, 4096 (2004)CrossRefGoogle Scholar
  10. 10.
    Litaiff, F., Ricardo, J., Branco, N.S.: Solid State Commun. 147, 494 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    He, Z., Cheng, W.: J. Magn. Magn. Mater. 362, 27 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Hida, K.: J. Phys. Soc. Jpn. 63, 2359 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Gavilano, J.L., Rau, D., Mushkolaj, S., Ott, H.R., Millet, P., Mila, F.: Phys. Rev. Lett. 90, 167202 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Schnack, J., Nojiri, H., Kogerler, P., Cooper, G.J.T., Cronin, L.: Phys. Rev. B 70, 174420 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Momoi, T., Sindzingre, P., Shannon, N.: Phys. Rev. Lett. 97, 257204 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Reimers, J.N., Berlinsky, A.J.: Phys. Rev. B 48, 9539 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    Lacroix, C., Mendels, P., Mila, F. In: Introduction to Frustrated Magnetism. Springer Series in Solid-State Sciences, p. 23. Springer (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Condensed Matter Physics Laboratory, Ben M’sik Science FacultyHassan II UniversityCasablancaMorocco

Personalised recommendations