Giant Exchange Bias of Hysteresis Loops on Cr3+-doped Ag Nanoparticles

  • Asmaa A. H. El-Bassuony
  • H. K. Abdelsalam
Original Paper


In this study, we fabricate Cr-doped Ag nanoparticles (AgCrO2 and Ag0.5Cr2.5O4) by flash autocombustion method. XRD confirmed that the samples have a single-phase spinel structure. The morphology is studied using high-resolution transmission electron microscopy (HRTEM) to confirm that the samples are on nanoscale. The magnetic properties are studied using a vibrating sample magnetometer (VSM) at room temperature (300 K) and at low temperatures (200 and 100 K). Exchange bias has occurred for the investigated samples below room temperatures. The shifts have occurred in the horizontal directions which may be ascribed to the frozen spins in the samples.


Exchange bias HRTEM Magnetic properties 


  1. 1.
    Ateia, E., El-Bassuony, A.A.H.: Fascinating improvement in physical properties of Cd / Co nanoferrites using different rare earth ions. J. Mater. Sci. Mater. Electron. 0, 0 (2017). Google Scholar
  2. 2.
    Maklad, M.H., Shash, N.M., Abdelsalam, H.K.: Synthesis, characterization and magnetic properties of nanocrystalline. Int. J. Mod. Phys. B 28(25), 1450165 (2014). ADSCrossRefGoogle Scholar
  3. 3.
    Costa, A.C.F.M., Silva, V.J., Ferreira, H.S., Costa, A.A., Cornejo, D.R., Kiminami, R.H.G.A., Gama, L.: Structural and magnetic properties of chromium-doped ferrite nanopowders. J. Alloys Compd. 483, 655–657 (2009). CrossRefGoogle Scholar
  4. 4.
    Ateia, E.E., El-Bassuony, A.A., Abdelatif, G., Soliman, F.S.: Novelty characterization and enhancement of magnetic properties of Co and Cu nanoferrites. J. Mater. Sci. Mater. Electron. 28 (2017)Google Scholar
  5. 5.
    Maklad, M.H., Shash, N.M., Abdelsalam, H.K.: Structural and magnetic properties of nanograined Ni 0 . 7 − y Zn 0 . 3 Ca y Fe 2 O 4 spinels structural and magnetic properties of nanograined. Eur. Phys. J. Appl. Phys. 66, 30402 (2014). CrossRefGoogle Scholar
  6. 6.
    Baruth, A.: Orthogonal easy axes isothermal tuning of magnetic coercivity in NiFe / NiO /[ Co / Pt ] heterostructures with orthogonal easy axes. J. Appl. Phys. 118, 093901 (2015). ADSCrossRefGoogle Scholar
  7. 7.
    Ateia, E., Salah, L.M., El-Bassuony, A.A.H.: Investigation of cation distribution and microstructure of nano ferrites prepared by different wet methods. J. Inorg. Organomet. Polym. Mater. 25 (2015)Google Scholar
  8. 8.
    El-Bassuony, A.A.H.: Enhancement of structural and electrical properties of novelty nanoferrite materials. J. Mater. Sci: Mater. Electron. 28, 14489–14498 (2009). Google Scholar
  9. 9.
    Diaz-Garcia, A.K., Lana-Villarreal, T., Gomez, R.: Sol-gel copper chromium delafossite thin films as stable oxide photocathodes for water splitting. J. Mater. Chem. A. 3, 19683–19687 (2015). CrossRefGoogle Scholar
  10. 10.
    Amami, M., Jlaiel, F., Strobel, P., Salah, A.: Structural, magnetic and electric properties of Delafossite-type oxide, Cu1−x Agx CrO2 (0 < x < 0.5). IOP Conf. Ser. Mater. Sci. Eng. 13, 12001 (2010). CrossRefGoogle Scholar
  11. 11.
    John, M., Heuss-aßbichler, S., Ullrich, A.: Conditions and mechanisms for the formation of nano-sized Delafossite (CuFeO2) at temperatures ≤ 90C in aqueous solution. J. Solid State Chem. 234, 55–62 (2016). ADSCrossRefGoogle Scholar
  12. 12.
    Byrappa, K., Adschiri, T.: Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 53, 117e166 (2007). CrossRefGoogle Scholar
  13. 13.
    El-Bassuony, A.A.H., Abdelsalam, H.K.: Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J. Alloys Compd. 726, 1106e1118 (2017). CrossRefGoogle Scholar
  14. 14.
    Ahmed, M.A., Okasha, N., Kershi, R.M.: Dramatic effect of rare earth ion on the electrical and magnetic properties of W-type barium hexaferrites. Phys. B Phys. Condens. Matter. 405, 3223–3233 (2010). ADSCrossRefGoogle Scholar
  15. 15.
    Ahmed, M.A., Okasha, N., El-dek, S.I.: Influence of Co content on the characterization and magnetic properties of magnetite. Ceram. Int. 36, 1529–1533 (2010). CrossRefGoogle Scholar
  16. 16.
    Maweja, K., Phasha, M.J., Choenyane, L.J.: Thermal stability and magnetic saturation of annealed nickel – tungsten and tungsten milled powders. Int. J. Refract. Met. Hard Mater. 30, 78–84 (2012). CrossRefGoogle Scholar
  17. 17.
    Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A.: Synthesis and magnetic properties of cobalt ferrite (CoFe 2 O 4 ) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308, 289–295 (2007). ADSCrossRefGoogle Scholar
  18. 18.
    Desai, P.A., Athawale, A.A.: Microwave combustion synthesis of silver doped lanthanum ferrite magnetic nanoparticles. Def. Sci. J. 63, 285–291 (2013). CrossRefGoogle Scholar
  19. 19.
    Du, A.: Magnetic hysteresis loop in antiferromagnetically coupled bilayer structures. Phys. Stat. Sol. (b) 245 (4), 740–744 (2008). ADSCrossRefGoogle Scholar
  20. 20.
    Presting, H., Ko, U.: Future nanotechnology developments for automotive applications. Mater. Sci. Eng. C 23, 737–741 (2003). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Physics Department, Higher Institute of EngineeringNew Cairo AcademyCairoEgypt

Personalised recommendations