Skip to main content
Log in

SPION@APTES@FA-PEG@Usnic Acid Bionanodrug for Cancer Therapy

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, we aimed to develop stable usnic acid (UA)-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) as a potential drug carrier for in vitro analysis of MCF-7 (breast cancer cell line), HeLa (cervix cancer cell line), L929 (mouse fibroblast cell line), U87 (glioblastoma cell line, brain cancer), and A549 (human lung cancer cell line) cell lines. SPIONs were synthesized via the polyol method and functionalized with APTES using the Stöber method. Carboxylated polyethylene glycol (PEG-COOH), folic acid (FA), and carboxylated luteolin (CL) were conjugated on the surface via a carboxylic/amine group using the nanoprecipitation method, respectively. X-ray powder diffraction analysis confirmed the purity of the product with crystallite size of around 11 nm. Fourier-transformed infrared spectrophotometer (FT-IR) analyses explained the conjugation of all functional groups to the surface of SPIONs. The percentages of inorganic and organic content in the products were investigated via thermal gravimetric analyzer (TGA). For morphological analysis, a transmission electron microscope (TEM) was used. The superparamagnetic property of the product was also confirmed by vibrating sample magnetometer (VSM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Avendano, C., Menendez, J.C.: Medicinal Chemistry of Anticancer Drugs, 1st edn, p. 1 (Chapter 1). Elsevier, Amsterdam (2008)

  2. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D.: Global, cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011)

    Article  Google Scholar 

  3. Wang, P., Cai, J., Chen, J.Q., Li, L.S., Sun, C.L., Xue, B., Ji, M.: 3D-QSAR and docking studies of piperidine carboxamide derivatives as ALK inhibitors. Med. Chem. Res. 23, 2576–2583 (2014)

    Article  Google Scholar 

  4. Gilchrest, B.A., Eller, M.S.: Cancer therapeutics: smart and smarter. Drugs Future 34, 205–216 (2009)

    Article  Google Scholar 

  5. Kamel, M.M., Abdo Megally, N.Y.: Synthesis of novel 1,2,4-triazoles, triazolothiadiazines and triazolothiadiazoles as potential anticancer agents. Eur. J. Med. Chem. 86, 75–80 (2014)

    Article  Google Scholar 

  6. La Regina, G., Bai, R., Coluccia, A., Famiglini, V., Pelliccia, S., Passacantilli, S., Rew, Y., Sun, D.: Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J. Med. Chem. 57, 6332–6341 (2014)

    Article  Google Scholar 

  7. Valente, S., Trisciuoglio, D., De Luca, T., Nebbioso, A., Labella, D., Lenoci, A., Bigogno, C., Dondio, G., Miceli, M., Brosch, G., Del Bufalo, D., Altucci, L., Mai, A.: 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: anticancer activities in cancer cells. J. Med. Chem. 57, 6259–6265 (2014)

    Article  Google Scholar 

  8. Varbanov, H.P., Goschl, S., Heffeter, P., Theiner, S., Roller, A., Jensen, F., Jakupec, M.A., Berger, W., Galanski, M., Keppler, B.K.: A novel class of bis- and tris-chelate diam (m) inebis(dicarboxylato) platinum(IV) complexes as potential anticancer prodrugs. J. Med. Chem. 57, 6751–6764 (2014)

    Article  Google Scholar 

  9. Wang, M.J., Liu, Y.Q., Chang, L.C., Wang, C.Y., Zhao, Y.L., Zhao, X.B., Qian, K., Nan, X., Yang, L., Yang, X.M, Hung, H.Y., Yang, J.S., Kuo, D.H., Goto, M., Morris-Natschke, S.L., Pan, S.L., Teng, C.M., Kuo, S.C., Wu, T.S., Wu, Y.C., Lee, K.H.: Design, synthesis, mechanisms of action, and toxicity of novel 20(s)-sulfonylamidine derivatives of camptothecin as potent antitumor agents. J. Med. Chem. 57, 6008–6018 (2014)

    Article  Google Scholar 

  10. Wang, C., Ravi, S., Garapati, U.S., Das, M., Howell, M., Mallela, J., Alwarappan, S., Mohapatra, S.S., Mohapatra, S.: Multifunctional chitosan magnetic-graphene(CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B 1, 4396–4405 (2013)

    Article  Google Scholar 

  11. Mandal, A., Sekar, S., Kanagavel, M., Chandrasekaran, N., Mukherjee, A., Sastry, T.P.: Collagen based magnetic nanobiocomposite as MRI contrast agent andfor targeted delivery in cancer therapy, Biochim. Biophys. Acta (BBA)-Gen. Subj. 1830, 4628–4633 (2013)

    Article  Google Scholar 

  12. Majewski, A.P., Schallon, A., Jérôme, V., Freitag, R., Müller, A.H.E., Schmalz, H.: Dual-responsive magnetic core–shell nanoparticles for nonviral gene deliveryand cell separation. Biomacromolecules 13, 857–866 (2012)

    Article  Google Scholar 

  13. Liu, H., Li, S., Liu, L., Tian, L., He, N.: An integrated and sensitive detectionplatform for biosensing application based on Fe@Au magnetic nanoparticlesas bead array carries. Biosens. Bioelectron. 26, 1442–1448 (2010)

    Article  Google Scholar 

  14. Chandra, S., Barola, N., Bahadur, D.: Impedimetric biosensor for early detectionof cervical cancer. Chem. Commun. 47, 11258–11260 (2011)

    Article  Google Scholar 

  15. Yalcı̧n, S., Erkan, M., Ünsoy, G., Parsian, M., Kleeff, J., Gündüz, U.: Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magneticnanoparticles on pancreatic cancer and stellate cell lines. Biomed. Pharmacother. 68, 737–743 (2014)

    Article  Google Scholar 

  16. Majewski, A.P., Schallon, A., Jérôme, V., Freitag, R., Müller, A.H.E., Schmalz, H.: Dual-responsive magnetic core–shell nanoparticles for nonviral gene delivery and cell separation. Biomacromolecules 13, 857–866 (2012)

    Article  Google Scholar 

  17. Shan, Z., Jiang, Y., Guo, M., Bennett, J.C., Li, X., Tian, H., Oakes, K., Zhang, X., Zhou, Y., Huang, Q., Chen, H., Promoting, D N A: loading on magnetic nanoparticles using aDNA condensation strategy. Colloids Surf. B: Biointerfaces 125, 247–254 (2015)

    Article  Google Scholar 

  18. Zhang, L., Dong, W.-F., Sun, H.-B.: Multifunctional superparamagnetic ironoxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5, 7664–7684 (2013)

    Article  ADS  Google Scholar 

  19. Roy, E., Patra, S., Madhuri, R., Sharma, P.K.: Stimuli-responsive poly(N-isopropylacrylamide)-co-tyrosine@gadolinium: iron oxide nanoparticle-basednanotheranostic for cancer diagnosis and treatment. Colloids Surf. B: Biointerfaces 142, 248–258 (2016)

    Article  Google Scholar 

  20. Mahmoudi, M., Sant, S., Wang, B., Laurent, S., Sen, T.: Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011)

    Article  Google Scholar 

  21. Ling, D., Hackett, M.J., Hyeon, T.: Surface ligands in synthesis modification,assembly and biomedical applications of nanoparticles. Nano Today 9, 457–477 (2014)

    Article  Google Scholar 

  22. Liu, X.L., Choo, E.S.G., Ahmed, A.S., Zhao, L.Y., Yang, Y., Ramanujan, R.V., Xue, J.M., Fan, D.D., Fan, H.M., Ding, J.: Magnetic nanoparticle-loaded polymernanospheres as magnetic hyperthermia agents. J. Mater. Chem. B 2, 120–128 (2014)

    Article  Google Scholar 

  23. Sun, L., Wu, Q., Peng, F., Liu, L., Gong, C.: Strategies of polymeric nanoparticles forenhanced internalization in cancer therapy. Colloids Surf. B: Biointerfaces 135, 56–72 (2015)

    Article  Google Scholar 

  24. Lu, X., Jiang, R., Yang, M., Fan, Q., Hu, W., Zhang, L., Yang, Z., Deng, W., Shen, Q., Huang, Y., Liu, X., Huang, W.: Monodispersed grafted conjugated polyelectrolyte-stabilized magnetic nanoparticles as multifunctional platform for cellular imaging and drug delivery. J. Mater. Chem. B 2, 376–386 (2014)

    Article  Google Scholar 

  25. Rouhollah, K., Pelin, M., Serap, Y., Gozde, U., Ufuk, G.: Doxorubicin loading, release, and stability of polyamidoamine dendrimer-coated magnetic nanoparticles. J. Pharm. Sci. 102, 1825–1835 (2013)

    Article  Google Scholar 

  26. Cocchietto, M., Skert, N., Nimis, P.L., Sava, G.: Naturwissenschaften 89(4), 137–146 (2002)

    Article  ADS  Google Scholar 

  27. Grumezescu, A.M., Saviuc, C., Chifiriuc, M.C., Hristu, R., Mihaiescu, D.E., Balaure, P., Stanciu, G., Lazar, V.: IEEE Trans. Nanobiosci. 10(4), 269–274 (2011)

    Article  Google Scholar 

  28. Chifiriuc, M.C., Ditu̧, L.M., Oprea, E., Litȩscu, S., Bucur, M., Marut escu, L., Enache, G., Saviuc, C., Burlibasa̧, M., Traistaru, T., Tanase, G., Lazar, V.: Roum Arch. Microbiol. Immunol. 68(4), 215–222 (2009)

    Google Scholar 

  29. Mitrovic, T., Stamenkovic, S., Cvetkovic, V., Tosic, S., Stankovic, M., Radojevic, I., Stefanovic, O., Comic, L., Dacic, D., Curcic, M., Markovic, S.: Int. J. Mol. Sci. 12(8), 5428–5448 (2011)

    Article  Google Scholar 

  30. Cocchietto, M., Skert, N., Nimis, P., Sava, G.: A review on usnic acid: an interesting natural compound. Naturwissenschaften 89, 137–146 (2002)

    Article  ADS  Google Scholar 

  31. Francolini, I., Taresco, V., Crisante, F., Martinelli, A., D’Ilario, L., Piozzi, A.: Water soluble usnic acid-polyacrylamide complexes with enhanced antimicrobial activity against Staphylococcus epidermidis. Int. J. Mol. Sci 14, 7356–7369 (2013)

    Article  Google Scholar 

  32. da Silva Santos, N.P., Nascimento, S.C., Wanderley, M.S., Pontes-Filho, N.T., da Silva, J.F., de Castro, C.M., Pereira, E.C., da Silva, N.H., Honda, N.K., Santos-Magalhaes, N.S.: Nanoencapsulation of usnic acid: an attempt to improve antitumour activity and reduce hepatotoxicity. Eur. J. Pharm. Biopharm. 64, 154–160 (2006)

    Article  Google Scholar 

  33. Lira, M.C., Siqueira-Moura, M.P., Rolim-Santos, H.M., Galetti, F.C., Simioni, A.R., Santos, N.P., Tabosa Do Egito, E.S., Silva, C.L., Tedesco, A.C., Santos-Magalhaes, N.S.: In vitro uptake and antimycobacterial activity of liposomal usnic acid formulation. J. Liposome Res. 19, 49–58 (2009)

    Article  Google Scholar 

  34. Martinelli, A., Bakry, A., D’Ilario, L., Francolini, I., Piozzi, A., Taresco, V.: Release behavior and antibiofilm activity of usnic acid-loaded carboxylated poly(l-lactide) microparticles. Eur. J. Pharm. Biopharm. 88, 415–423 (2014)

    Article  Google Scholar 

  35. Grumezescu, A.M., Saviuc, C., Chifiriuc, M.C., Hristu, R., Mihaiescu, D.E., Balaure, P., Stanciu, G., Lazar, V.: Inhibitory activity of Fe3 O 4/oleic acid/usnic acid-core/shell/extrashell nanofluid on S. aureus biofilm development. IEEE Trans. Nanobiosci. 10, 269–274 (2011)

    Article  Google Scholar 

  36. Grumezescu, A.M., Cotar, A.I., Andronescu, E., Ficai, A., Ghitulica, C.D., Grumezescu, V., Vasile, B.S., Chifiriuc, M.C.: In vitro activity of the new water-dispersible Fe3 O 4@ usnic acid nanostructure against planktonic and sessile bacterial cells. J. Nanopart. Res. 15, 1766–1776 (2013)

    Article  ADS  Google Scholar 

  37. Baykal, A., Amir, Md., Güner, S., Sözeri, H.: Preparation and characterization of SPION functionalized via caffeic acid. J. Magn. Magn. Mater. 395, 199–204 (2015)

    Article  ADS  Google Scholar 

  38. Manikandan, A., Vijaya, J.J., Mary, J. Arul., Kennedy, L.J., Dinesh, A.: Structural, optical and magnetic properties of Fe3 O 4 nanoparticles prepared by a facile microwave combustion method. J. Ind. Eng. Chem. 20, 2077–2085 (2014)

    Article  Google Scholar 

  39. Akal, Z.U., Alpsoy, L., Baykal, A.: Superparamagnetic iron oxide conjugated with folic acid and carboxylated quercetin for chemotherapy applications. Ceram. Int. 42, 9065–9072 (2016)

    Article  Google Scholar 

  40. Marıawıllıam, S.M., Francıs, A.P., Devasena, T.: In situ isolation and characterizatıon of nano-usnic acid for medical applications. Int. J. Pharm. Pharm. Sci. 6(6), 222–226 (2014)

    Google Scholar 

  41. Zhang, Y., Zhang, J.: Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J. Colloid Interface Sci. 283, 352–357 (2005)

    Article  ADS  Google Scholar 

  42. Dousseau, F., Pezolet, M.: Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry 29, 8771–8779 (1990)

    Article  Google Scholar 

  43. Barth, A., Zscherp, C.: What vibrations tell about proteins. Q. Rev. Biophys. 35, 369–430 (2002)

    Article  Google Scholar 

  44. Kurtan, U., Onuş, E., Amir, Md., Baykal, A.: Fe3 O 4@Hpipe-4@Cu Nanocatalyst for hydrogenation of nitro-aromatics and azo dyes. J. Inorg. Organomet. Polym. 25, 1120–1128 (2015)

    Article  Google Scholar 

  45. Manikandan, A., Vijaya, J.J., Joh, J.K.: Structural, optical and magnetic properties of porous α-Fe2 O 3 nanostructures prepared by rapid combustion method. J. Nanosci. Nanotechnol. 13, 2986–2992 (2013)

    Article  Google Scholar 

  46. Zhang, L., Wu, Z., Chen, L., Zhang, L., Li, X., Xu, H., Wang, H., Zhu, G.: Preparation of magnetic Fe3 O 4/TiO2/Ag composite microspheres with enhanced photocatalytic activity. Solid State Sci. 52, 42–48 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpsoy, L., Baykal, A., Amir, M. et al. SPION@APTES@FA-PEG@Usnic Acid Bionanodrug for Cancer Therapy. J Supercond Nov Magn 31, 1395–1401 (2018). https://doi.org/10.1007/s10948-017-4333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4333-9

Keywords

Navigation