Lateral Shifts for Spin Electrons in a Hybrid Magnetic-Electric-Barrier Nanostructure Modulated by Spin-Orbit Couplings

  • Qiang Tang
  • Mao-Wang Lu
  • Xin-Hong Huang
  • Yong-Long Zhou
Original Paper
  • 45 Downloads

Abstract

We theoretically investigate how to modulate spin-dependent lateral shifts by the spin-orbit coupling (SOC) in a hybrid magnetic-electric-barrier (MEB) nanostructure, which can be experimentally realized by depositing a ferromagnetic (FM) stripe and a Schottky metal (SM) stripe on the top and bottom of the semiconductor heterostructure, respectively. Two kinds of ROCs, Rashba SOC (RSOC) and Dresselhaus SOC (DSOC), are taken into account fully. The Schrödinger equation of the spin electron in the hybrid MEB nanostructure is exactly solved by using the improved transfer-matrix method (ITMM), and the lateral shift and its spin polarization are numerically calculated with the help of the stationary phase method (SPM). Theoretical analysis indicates that the spin polarization effect in the lateral shift still exists in the hybrid MEB nanostructure when the SOCs are considered. Numerical simulations show that both magnitude and sign of the spin polarization effect in lateral shifts vary strongly with the strengths of RSOC and DSOC. These interesting features may offer an effective means to control the behavior of spin-polarized electrons in the semiconductor nanostructure, and such a hybrid MEB nanostructure serves as a SOC-manipulable spatial spin splitter for spintronic applications.

Keywords

Hybrid MEB nanostructure RSOC and DSOC Lateral shift Spin polarization effect Spatial spin splitter 

Notes

Acknowledgements

This work was supported jointly by the National Natural Science Foundation of China (Grant No. 61464004) and the Guangxi Natural Science Foundation of China (Grant No. 2016GXNSFAA380095).

References

  1. 1.
    Wolf, S.A.: Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Zutic, I., Fabian, J., Sarrna, S.D.: Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, X.D.: Appl. Phys. Lett. 88, 052114 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Khodas, M., Shekhter, A., Finkel’Stein, A.M.: Phys. Rev. Lett. 92, 086602 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Goos, F., Hänchen, H.: Ann. Phys. 5, 251 (1949)CrossRefGoogle Scholar
  6. 6.
    Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q., Li, S.: J. Appl. Phys. 115, 174305 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Nogaret, A., Bending, S.J., Henini, M.: Phys. Rev. Lett. 84, 2231 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Matulis, A., Peeters, F.M., Vasilopoulos, P.: Phys. Rev. Lett. 72, 1518 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, S.Y., Zhang, G.L.: IEEE T Electron. Dev. 64, 1825 (2017)Google Scholar
  10. 10.
    Wang, Z.Y., Liang, Y.L., An, Y.B., Li, L.Q.: Appl. Phys. Lett. 102, 022410 (2013)Google Scholar
  11. 11.
    Zhai, F., Guo, Y., Gu, B.L.: Phys. Rev. B 66, 125305 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Chen, X., Lu, X.J., Ban, Y., Li, C.F.: J. Opt. 15, 033001 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Chen, X., Li, C.F., Ban, Y.: Phys. Rev. B 77, 073307 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Yuan, L., Xiang, L.L., Kong, Y.H., Lu, M.W., Lan, Z.J., Zeng, A.H., Wang, Z.Y.: Eur. Phys. J. B 85, 8 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Shen, L.H., Ma, W.Y., Liu, G.X.: J. Electron. Mater. 45, 4183 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Shen, L.H., Ma, W.Y., Liu, G.X., Yuan, L., Magnet, J.: Magnet. Mater. 401, 231 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Liu, G.X., Ma, W.Y., Shen, L.H.: Superlatt. Microstruct. 88, 204 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q., Li, S., Yang, S.P.: Superlatt. Microstruct. 77, 232 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Liu, X.H., Zhang, G.L., Kong, Y.H., Li, A.H., Fu, X.: Appl. Surf. Sci. 313, 545 (2014)CrossRefGoogle Scholar
  20. 20.
    Ma, W.Y., Zhang, G.L., Chen, S.Y., Jiang, Y.Q., Li, S.: Phys. Lett. A 378, 1642 (2014)CrossRefGoogle Scholar
  21. 21.
    Rashba, E.I.: Sov. Phys. Solid State 2, 1109 (1960)Google Scholar
  22. 22.
    Dresselhaus, G.: Phys. Rev. 100, 580 (1955)ADSCrossRefGoogle Scholar
  23. 23.
    Lu, M.W., Zhang, L.D., Yan, X.H.: Phys. Rev. B 66, 224412 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Chen, X., Li, C.F., Ban, Y.: Phys. Lett. A 354, 161 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Bohm, D.: Quantum Theory. Prentice-Hall, New York (1951)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of ScienceGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations