Skip to main content
Log in

Lateral Shifts for Spin Electrons in a Hybrid Magnetic-Electric-Barrier Nanostructure Modulated by Spin-Orbit Couplings

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We theoretically investigate how to modulate spin-dependent lateral shifts by the spin-orbit coupling (SOC) in a hybrid magnetic-electric-barrier (MEB) nanostructure, which can be experimentally realized by depositing a ferromagnetic (FM) stripe and a Schottky metal (SM) stripe on the top and bottom of the semiconductor heterostructure, respectively. Two kinds of ROCs, Rashba SOC (RSOC) and Dresselhaus SOC (DSOC), are taken into account fully. The Schrödinger equation of the spin electron in the hybrid MEB nanostructure is exactly solved by using the improved transfer-matrix method (ITMM), and the lateral shift and its spin polarization are numerically calculated with the help of the stationary phase method (SPM). Theoretical analysis indicates that the spin polarization effect in the lateral shift still exists in the hybrid MEB nanostructure when the SOCs are considered. Numerical simulations show that both magnitude and sign of the spin polarization effect in lateral shifts vary strongly with the strengths of RSOC and DSOC. These interesting features may offer an effective means to control the behavior of spin-polarized electrons in the semiconductor nanostructure, and such a hybrid MEB nanostructure serves as a SOC-manipulable spatial spin splitter for spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolf, S.A.: Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. Zutic, I., Fabian, J., Sarrna, S.D.: Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  3. Zhang, X.D.: Appl. Phys. Lett. 88, 052114 (2006)

    Article  ADS  Google Scholar 

  4. Khodas, M., Shekhter, A., Finkel’Stein, A.M.: Phys. Rev. Lett. 92, 086602 (2004)

    Article  ADS  Google Scholar 

  5. Goos, F., Hänchen, H.: Ann. Phys. 5, 251 (1949)

    Article  Google Scholar 

  6. Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q., Li, S.: J. Appl. Phys. 115, 174305 (2014)

    Article  ADS  Google Scholar 

  7. Nogaret, A., Bending, S.J., Henini, M.: Phys. Rev. Lett. 84, 2231 (2000)

    Article  ADS  Google Scholar 

  8. Matulis, A., Peeters, F.M., Vasilopoulos, P.: Phys. Rev. Lett. 72, 1518 (1994)

    Article  ADS  Google Scholar 

  9. Chen, S.Y., Zhang, G.L.: IEEE T Electron. Dev. 64, 1825 (2017)

  10. Wang, Z.Y., Liang, Y.L., An, Y.B., Li, L.Q.: Appl. Phys. Lett. 102, 022410 (2013)

  11. Zhai, F., Guo, Y., Gu, B.L.: Phys. Rev. B 66, 125305 (2002)

    Article  ADS  Google Scholar 

  12. Chen, X., Lu, X.J., Ban, Y., Li, C.F.: J. Opt. 15, 033001 (2013)

    Article  ADS  Google Scholar 

  13. Chen, X., Li, C.F., Ban, Y.: Phys. Rev. B 77, 073307 (2008)

    Article  ADS  Google Scholar 

  14. Yuan, L., Xiang, L.L., Kong, Y.H., Lu, M.W., Lan, Z.J., Zeng, A.H., Wang, Z.Y.: Eur. Phys. J. B 85, 8 (2012)

    Article  ADS  Google Scholar 

  15. Shen, L.H., Ma, W.Y., Liu, G.X.: J. Electron. Mater. 45, 4183 (2016)

    Article  ADS  Google Scholar 

  16. Shen, L.H., Ma, W.Y., Liu, G.X., Yuan, L., Magnet, J.: Magnet. Mater. 401, 231 (2016)

    Article  ADS  Google Scholar 

  17. Liu, G.X., Ma, W.Y., Shen, L.H.: Superlatt. Microstruct. 88, 204 (2015)

    Article  ADS  Google Scholar 

  18. Lu, M.W., Cao, X.L., Huang, X.H., Jiang, Y.Q., Li, S., Yang, S.P.: Superlatt. Microstruct. 77, 232 (2015)

    Article  ADS  Google Scholar 

  19. Liu, X.H., Zhang, G.L., Kong, Y.H., Li, A.H., Fu, X.: Appl. Surf. Sci. 313, 545 (2014)

    Article  Google Scholar 

  20. Ma, W.Y., Zhang, G.L., Chen, S.Y., Jiang, Y.Q., Li, S.: Phys. Lett. A 378, 1642 (2014)

    Article  Google Scholar 

  21. Rashba, E.I.: Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  22. Dresselhaus, G.: Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  23. Lu, M.W., Zhang, L.D., Yan, X.H.: Phys. Rev. B 66, 224412 (2002)

    Article  ADS  Google Scholar 

  24. Chen, X., Li, C.F., Ban, Y.: Phys. Lett. A 354, 161 (2006)

    Article  ADS  Google Scholar 

  25. Bohm, D.: Quantum Theory. Prentice-Hall, New York (1951)

    Google Scholar 

Download references

Acknowledgements

This work was supported jointly by the National Natural Science Foundation of China (Grant No. 61464004) and the Guangxi Natural Science Foundation of China (Grant No. 2016GXNSFAA380095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Wang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Lu, MW., Huang, XH. et al. Lateral Shifts for Spin Electrons in a Hybrid Magnetic-Electric-Barrier Nanostructure Modulated by Spin-Orbit Couplings. J Supercond Nov Magn 31, 1383–1388 (2018). https://doi.org/10.1007/s10948-017-4324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4324-x

Keywords

Navigation