Finite Size Effects in Anisotropic u = ∞ Hubbard Ladder Rings

  • V. O. Cheranovskii
  • E. V. Ezerskaya
  • D. J. Klein
  • V. V. Tokarev
Original Paper


We apply perturbation theory and cyclic spin permutation formalism to study the lowest energy states of the infinite-repulsion Hubbard model on finite fragments of n-leg ladder rings and show jump-wise behavior of the ground state spin S 0 as a function of fragment parameters.


Hubbard model Infinite electron repulsion Ground state spin Magnetic polaron 



VOC acknowledges the support of the VolkswagenStiftung, Germany (via grant 151110). DJK acknowledges the support of the Welch Foundation of Houston, TX (via grant BD-0894).


  1. 1.
    Nagaoka, Y.: Ferromagnetism in a narrow, almost half-filled s band. Phys. Rev. 147, 392–405 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    Liu, L., Yao, H., Berg, E., White, S.R., Kivelson, S.A.: Phases of the infinite U Hubbard model on square lattices. Phys. Rev. Lett. 108(4), 126406 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Krivnov, V.Y., Ovchinnikov, A.A., Cheranovskii, V.O.: Magnetic properties of the Hubbard model with strong interactions. Synth. Met. 33, 65–79 (1989)CrossRefGoogle Scholar
  4. 4.
    Cheranovskii, V.O.: The application of cyclic spin permutations to the theory of strongly correlated electron systems. Int. J. Quant. Chem. 41, 695–708 (1992)CrossRefGoogle Scholar
  5. 5.
    Cheranovskii, V.O., Esenturk, O., Pamuk, H.O.: Magnetic properties of multiband \(U=\infty \) Hubbard model on anisotropic triangular and rectangular lattice strips. Phys. Rev. B 58, 1226–12266 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Wei, B.B., Gu, S.J., Lin, H.Q.: Persistent currents in one-dimensional mesoscopic Hubbard ring. J. Phys. Cond. Mat. 20 395209 (2008)Google Scholar
  7. 7.
    Konho, M.: Aspects of the ground state of the \(U=\infty \) Hubbard ladder. Phys. Rev. B 56, 15015–15024 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Ezerskaya, E.V., Cheranovskii, V.O.: Magnetic-properties of the Hubbard model with infinite repulsion on rectangular anisotropic lattice. Fizika Nizkikh Temperatur (Kharkov) 18, 872–875 (1992)Google Scholar
  9. 9.
    Cheranovskii, V.O., Ezerskaya, E.V.: Magnetic properties of the infinite U Hubbard model on one-dimensional frustrated lattices. J. Supercond. Nov. Magn. 28, 773–776 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • V. O. Cheranovskii
    • 1
  • E. V. Ezerskaya
    • 1
  • D. J. Klein
    • 2
  • V. V. Tokarev
    • 1
  1. 1.V.N. Karazin Kharkiv National UniversityKharkivUkraine
  2. 2.Texas A&M University at GalvestonGalvestonUSA

Personalised recommendations