The Influence of Pinning Centers in the Magnetization of the Mesoscopic Superconductors

  • Isaías G. de Oliveira
Original Paper


In this work, we study the mesoscopic superconducting samples with pinning centers using the time-dependent Ginzburg-Landau theory (TDGL). The pinning centers are introduced via the phenomenological function f(r) Sorensen et al. (Physica C 533, 40–43 2017). We calculated the magnetization curves M(H) for some distances d from the boundary of the sample to the position of the pinning center. From this investigation arises the relation between the first magnetic field H p and the distance d. It shows that the pinning centers located close to the boundary of the sample decrease H p , and also the existence of two regimes of the penetration of the vortices. The magnetization curves revel the existence of ruddle of jumps for low magnetic fields for small distances d, indicating a complex vortex penetration.


Ginzburg-Landau theory Vortex pinning Mesoscopic and nanoscale system 


  1. 1.
    Sorensen, M.P., Pedersen, N.F., Ogren, M.: Physica C 533, 40–43 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Blatter, G., Feigelman, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Larkin, A.I., Ovchinnikov, Y.N.: J. of Low Temp. Phys. 34, 409–428 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    Baert, M., Metlushko, V.V., Jonckheere, R., Moshchalkov, V.V., Bruynseraede, Y.: Phys. Rev. Lett. 74, 3269 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Baert, M., Metlushko, V.V., Jonckheere, R., Moshchalkov, V.V., Bruynseraede, Y.: Europhys. Lett. 29, 157 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Scanlan, R.M., Fietz, W.A., Koch, F.: J. Appl. Phys. 46, 2244 (1975). ADSCrossRefGoogle Scholar
  7. 7.
    Silhanek, A.V., Van de Vondel, J., Leo, A., Ataklti, G.W., Gillijns, W., Moshchalkov, V.V.: Supercond. Sci. Technol 22, 034002 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Buisson, O., Gandit, P., Rammal, R., Wang, Y.Y., Pannetier, B.: Phys. Lett. A 150, 36 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    Moshchalkov, V.V., Gielen, L., Strunk, C., Jonckheere, R., Qiu, X., van Haesendonck, C., Bruynseraede, Y.: Nature 319, 373 (1995)Google Scholar
  10. 10.
    Geim, A.K., Grigorieva, I.V., Dubonos, S.V., Lok, J.G.S., Maan, J.C., Pilippov, A.E., Peetes, F.M.: Nature 390, 259–262 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Palacios, J.J.: Phys. Rev. B 58, R5948 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Schweigert, V.A., Peeters, F.M., Deo, P.S.: Phys. Rev. Lett. 81, 2783 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Chibotaru, L.F., Ceulemans, A., Bruyndoncx, V., Moshchalkov, V.V.: Nature 408, 833 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Chibotaru, L.F., Ceulemans, A., Bruyndoncx, V., Moshchalkov, V.V.: Phys. Rev. Lett. 86, 1323 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Peeters, F.M., Schweigert, V.A.: Nature 407, 55 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Ray, D., Reichhardt, C., Olson Reichhardt, C.J., Jankó, B.: Phys. C 503, 123–127 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Zimmerman, W.B.J.: Multiphysics Modelling with Finite Element Methods. World Scientific, Singapore (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Alstrom, T.S., Sorensen, M.P., Petersen, N.F., Madsen, S.: Acta Appl. Math 115, 63–74 (2011). MathSciNetCrossRefGoogle Scholar
  19. 19.
    de Oliveira, I.G.: Phys. Lett. A 381, 1248–1254 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    de Oliveira, I.G.: J. Supercond Nov. Magn. 27, 1143–1152 (2014)CrossRefGoogle Scholar
  21. 21.
    de Oliveira, I.G.: Phys.Lett. A 379, 1486–1491 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Gorkov, L.P., Eliashburg, G.M.: Sov. Phys. (JETP) 27, 328–334 (1968)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal Rural do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations