Skip to main content
Log in

Effect of Gap Parameter on Electronic Heat Capacity and Magnetic Susceptibility of Graphene in the Presence of Holstein Phonons

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Thermodynamic properties of gapped graphene-like structures by considering the effects of interaction between electrons and Holstein phonons have been studied. Particularly, we study the heat capacity and paramagnetic susceptibility of structures as a function of temperature within the Green’s function method with the help of Holstein model. The paramagnetic susceptibility and heat capacity can be derived by using density of states based on the Kubo formula. We have found the energy dependence of density of states for various values of gap in the presence of Holstein phonons. Finally, the temperature behaviors of specific heat and spin susceptibility of gapped graphene structure due to electron-phonon coupling have been investigated. Our results show the electron-phonon interaction leads to the appearance of a double van Hov singularity for each value of gap parameter. Also, electron-phonon coupling affects the value of heat capacity and magnetic susceptibility at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov, K.S., et al.: Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. Slater, J.C., Koster, G.F.: Phys. Rev. 94, 1498 (1954)

    Article  ADS  Google Scholar 

  4. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes, p. 105. Imperial College Press, London (1998)

    Book  Google Scholar 

  5. Kaxiras, E.: Atomic and Electronic Structure of Solids, p. 107. Cambridge University Press, UK (2003)

    Book  Google Scholar 

  6. Aktruck, A., Goldman, N.: J. Appl. Phys. 103, 053702 (2008)

    Article  ADS  Google Scholar 

  7. Basko, D.M., Aleiner, I.L.: Phys. Rev. B 77(R), 041409 (2008)

    Article  ADS  Google Scholar 

  8. Park, C.-H., Giustino, F., Cohen, M.L., Louie, S.G.: Nano Lett. 8, 4229 (2008)

    Article  ADS  Google Scholar 

  9. Su, W.P., Schrieffer, J.R., Heeger, A.J.: Phys. Rev. Lett. 42, 1698 (1979)

    Article  ADS  Google Scholar 

  10. Holstein, T.: Ann. Phys. (N.Y) 8, 325 (1959)

    Article  ADS  Google Scholar 

  11. Capone, M., Ciuchi, S.: Phys. Rev. Lett. 91, 186405 (2003)

    Article  ADS  Google Scholar 

  12. Stauber, T., Peres, N.M.R., Phis, J.: Phys. Rev. B 76, 205423 (2007)

    Article  ADS  Google Scholar 

  13. Piscanec, S., et al: Phys. Rev. Lett 93, 185503 (2004)

    Article  ADS  Google Scholar 

  14. Piscanec, S., et al: Phys. Rev. B 75, 035427 (2007)

    Article  ADS  Google Scholar 

  15. Hudgens, S., Kastner, M., Fritzsche, H.: Phys. Rev. Lett 33, 1552 (1974)

    Article  ADS  Google Scholar 

  16. Safran, S.A., DiSalvo, F.J.: Phys. Rev. B 20, 4889 (1979)

    Article  ADS  Google Scholar 

  17. McClure, J.W.: Phys. Rev. B 104, 666 (1956)

    Article  ADS  Google Scholar 

  18. McClure, J.W.: Phys. Rev. B 119, 606 (1960)

    Article  ADS  Google Scholar 

  19. Koshino, M., Ando, T.: Phys. Rev. B 76, 085425 (2007)

    Article  ADS  Google Scholar 

  20. Liu, J., Ma, Z., Wright, A.R., Zhang, C.: J. Appl. Phys 103, 103711 (2008)

    Article  ADS  Google Scholar 

  21. Peres, N.M.R., Guinea, F., Castro Neto, A.H.: Phys. Rev. B 73, 125411 (2006)

    Article  ADS  Google Scholar 

  22. Yi, K.S., Kim, D., Park, K.S.: Phys. Rev. B 76, 115410 (2007)

    Article  ADS  Google Scholar 

  23. Osella, S., Minoia, A., Beljonne, D.: J. Phys. Chem. C 120, 6651 (2016)

    Article  Google Scholar 

  24. Rassulinejad-Mousavi, S.M., Mao, Y., Zhang, Y.: J. Appl. Phys 119, 244304 (2016)

    Article  ADS  Google Scholar 

  25. Rassulinejad-Mousavi, S.M., Seyf, H.R., Abbasbandy, S.: J. Porous Media 16, 241 (2013)

    Article  Google Scholar 

  26. Rassulinejad-Mousavi, S.M., Abbasbandy, S.: J Fluid Eng-T ASME 133, 101207 (2011)

    Article  Google Scholar 

  27. Rassulinejad-Mousavi, S.M., Abbasbandy, S., Alsulami, H.H.: EPJ Plus 129, 1 (2014)

    Google Scholar 

  28. Seyf, H.R., Rassulinejad-Mousavi, S.M.: J Fluid Eng-T ASME 133, 091203 (2011)

    Article  Google Scholar 

  29. Stauber, T., Peres, N.M.: J. Phys.: Condens. Matter 20, 055002 (2008)

    ADS  Google Scholar 

  30. Calandra, M., Mauri, F.: Phys. Rev. B 76, 205411 (2007)

    Article  ADS  Google Scholar 

  31. Tse, W.-K., Sarma, D.: Phys. Rev. Lett 99, 236802 (2007)

    Article  ADS  Google Scholar 

  32. Migdal, A.B.: Zh. Eksp. Teor. Fiz 34, 1438 (1958)

    Google Scholar 

  33. Mahan, G.D.: Many Particle Physics. Plenumn Press, New York (1993)

    Google Scholar 

  34. Grosso, G., Parravicini, G.P.: Solid State Physics. Academic Press, Singapore (2000)

    Google Scholar 

  35. Bruus, H., Flensberg, K.: Many Body Quantum Theory in Condensed Matter Physics. Oxford University Press, Denmark (2004)

    Google Scholar 

  36. Nolthing, W., Ramakanth, A.: Qunatum Theory of Magnetism. Springer, New York (2009)

    Book  Google Scholar 

  37. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)

    MATH  Google Scholar 

  38. Hone, J., Batlogg, B., Benes, Z., Johnson, A.T., Fischer, J.E.: Science 289, 1730 (2000)

    Article  ADS  Google Scholar 

  39. Mousavi, H., Khodadadi, J.: Phys. E. 50, 11 (2013)

    Article  Google Scholar 

  40. Mousavi, H.: J. Magn. Magn. Mater. 323, 1537 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Rezania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezania, H., Yarmohammadi, M. Effect of Gap Parameter on Electronic Heat Capacity and Magnetic Susceptibility of Graphene in the Presence of Holstein Phonons. J Supercond Nov Magn 31, 1293–1299 (2018). https://doi.org/10.1007/s10948-017-4300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4300-5

Keywords

Navigation