Crystal Growth and Magneto-transport of Bi2Se3 Single Crystals

  • Geet Awana
  • Rabia Sultana
  • P. K. Maheshwari
  • Reena Goyal
  • Bhasker Gahtori
  • Anurag Gupta
  • V. P. S. Awana
Letter

Abstract

In this letter, we report on the growth and characterization of bulk Bi 2Se 3 single crystals. The studied Bi 2Se 3 crystals are grown by the self-flux method through the solid-state reaction from high-temperature (950 °C) melt of constituent elements and slow cooling (2 ℃/h). The resultant crystals are shiny and grown in the [00l] direction, as evidenced from surface XRD. Detailed Reitveld analysis of powder X-ray diffraction (PXRD) of the crystals showed that these are crystallized in the rhombohedral crystal structure with a space group of R3m (D5), and the lattice parameters are a = 4.14 (2), b = 4.14 (2), and c = 28.7010 (7) Å. Temperature versus resistivity (ρT) plots revealed metallic conduction down to 2 K, with typical room temperature resistivity (ρ 300 K) of around 0.53 m Ω-cm and residual resistivity (ρ 0 K) of 0.12 m Ω-cm. Resistivity under magnetic field [ ρ(T)H] measurements exhibited large + ve magneto-resistance right from 2 to 200 K. Isothermal magneto-resistance [ ρH] measurements at 2, 100, and 200 K exhibited magneto-resistance (MR) of up to 240 %, 130 %, and 60 %, respectively, at 14 T. Further, the MR plots are nonsaturating and linear with the field at all temperatures. At 2 K, the MR plots showed clear quantum oscillations at above say 10 T applied field. Also, the Kohler plots, i.e., Δρ/ ρ oversus B/ ρ, were seen consolidating on one plot. Interestingly, the studied Bi 2Se 3 single crystal exhibited the Shubnikov-de Haas (SdH) oscillations at 2 K under different applied magnetic fields ranging from 4 to 14 T.

Keywords

Topological insulators Crystal growth Structural details Magneto-resistance 

Notes

Acknowledgments

The authors from CSIR-NPL acknowledge the encouragement and support of their director Prof. D. K. Aswal. Geet Awana thanks Prof. Sanjay Jain, Head of the Department of Physics and Astrophysics, Delhi University, for his support.

References

  1. 1.
    Kane, C.L., Mele, E.J.: Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Bernevig, B.A., Zhang: Phys. Rev. Lett. 96, 106802 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Hasan, M.Z., Kane, C.: Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Kane, C.L., Moore, J.E.: Phys. World 24, 32 (2011)CrossRefGoogle Scholar
  5. 5.
    Ando, Y., Fu, L.: Annu. Rev. Condens. Matter Phys. 6, 361 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Ando, Y.: J. Phys. Soc. Jpn. 82, 102001 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Dai, X., Hughes, T.L., Qi, X.L., Fang, Z., Zhang, S.C.: Phys. Rev. B 77, 125319 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Sultana, R., Neha, P., Goyal, R., Patnaik, S., Awana, V.P.S.: J. Magn. Mag. Mater. 428, 213 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Eto, K., Ren, Z., Taskin, A.A., Segawa, K., Ando, Y.: Phys. Rev. B 81, 195309 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Akiyama, R., Sumida, K., Ichinokura, S., Kimura, A., Kokh, KA., Tereshchenko, O.E., Hasegawa, S.: arXiv:1701.00137
  11. 11.
    Yan, Y., Wang, L.-X., Yu, D.-P., Liao, Z.-M.: Appl. Phys. Lett. 103, 033106 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Abrikosov, A.A.: Phys. Rev. B 58, 2788 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Geet Awana
    • 1
  • Rabia Sultana
    • 2
  • P. K. Maheshwari
    • 2
  • Reena Goyal
    • 2
  • Bhasker Gahtori
    • 2
  • Anurag Gupta
    • 2
  • V. P. S. Awana
    • 2
  1. 1.Department of Physics and AstrophysicsDelhi UniversityNew DelhiIndia
  2. 2.CSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations