Systemic Study of Orbital and Spin Nematicity in NaFe1−x Co x As by NMR

Original Paper

Abstract

Nematic order, a self-organized state with rotational symmetry broken, has been observed in both copper-oxide and iron-pnictide high temperature superconductors. However, its origin is still a mystery in the iron pnictides although it is considered as a key to understand the mechanism of superconductivity. Here, we report a systemic nuclear magnetic resonance (NMR) study on NaFe1−x Co x As (0 ≤x ≤ 0.042) that an orbital order, accompanied by an instant spin nematicity, occurs at at a temperature T far above structural transition temperature T s in the tetragonal phase. We show that the observed NMR spectra splitting and its evolution is due to an incommensurate orbital order that sets in below T and becomes commensurate below T s. We show that the electric field gradient asymmetry parameter is a good measure for the orbital order parameter which undergoes a Landau-like 2nd-order phase transition. We further show that the spin nematicity is well accounted for by the observed orbital order.

Keywords

Iron pnictides Nuclear magnetic resonance Nematic order 

Notes

Acknowledgments

This work was done in collaboration with L.Y. Xing, X. C. Wang, and C. Q. Jin of Institute of Physics. We thank S. Maeda and T. Oguchi for advice and help in the EFG calculation, Z. Li and J. Yang for assistance in some of the measurements. This work was partially supported by CAS Strategic Priority Research Program, No. XDB07020200 and by a 973 project National Basic Research Program of China, No. 2012CB821402.

References

  1. 1.
    Daou, R., Chang, J., LeBoeuf, D., Cyr-Choinière, O., Laliberté, F., Doiron-Leyraud, N., Ramshaw, B.J., Liang, R., Bonn, D.A., Hardy, W.N., Taillefer, L.: Nature 463, 519–522 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Yi, M., Lu, D.H., Chu, J.-H., Analytis, J.G., Sorinia, A.P., Kemper, A.F., Moritz, B., Mod, S.-K., Moore, R.G., Hashimoto, M., Lee, W.-S., Hussain, Z., Devereaux, T.P., Fisher, I.R., Shen, Z.-X.: Proc. Nat. Acad. Sci. 108, 6878–6883 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Li, Z., Zhou, R., Liu, Y., Sun, D.L., Yang, J., Lin, C.T., Zheng, G.-Q.: Phys. Rev. B 86 (R), 180501 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Zhou, R., Li, Z., Yang, J., Sun, D.L., Lin, C.T., Zheng, G.Q.: Nat. Commun. 4, 2265 (2013)ADSGoogle Scholar
  5. 5.
    Yang, J., Zhou, R., Wei, L.L., Yang, H.X., Li, J.Q., Zhao, Z.X., Zheng, G.Q.: Chinese Phys. Lett. 32, 107401 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Kawasaki, S., et al.: Phys. Rev. B 180508(R), 92 (2015)Google Scholar
  7. 7.
    Caivano, R., Fratini, M., Poccia, N., Ricci, A., Puri, A., Ren, Z.-A., Dong, X.-L., Yang, J., Lu, W., Zhao, Z.-X., Barba, L., Bianconi, A.: Supercond. Sci. Technol. 22, 014004 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Kontani, H., Onari, S.: Phys. Rev. Lett. 104, 157001 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Chu, J.-H., Kuo, H.-H., Analytis, J.G., Fisher, I.R.: Science 337, 710 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Fernandes, R.M., VanBebber, L.H., Bhattacharya, S., Chandra, P., Keppens, V., Mandrus, D., McGuire, M.A., Sales, B.C., Sefat, A.S., Schmalian, J.: Phys. Rev. Lett. 105, 157003 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Lee, C., Yin, W.-G., Ku, W.: Phys. Rev. Lett. 103, 267001 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Onari, S., Kontani, H.: Phys. Rev. Lett. 109, 137001 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Parker, D.R., Michael, J.P., Peter, J.B., Isabel, F., Tom, L., Stephen, J.B., Simon, J.C.: Chem. Commun. 16, 2189–2191 (2009)CrossRefGoogle Scholar
  14. 14.
    Rosenthal, E.P., Andrade, E.F., Arguello, C.J., Fernandes, R.M., Xing, L.Y., Wang, X.C., Jin, C.Q., Millis, A.J., Pasupathy, A.N.: Nat. Phys. 10, 225–232 (2014)CrossRefGoogle Scholar
  15. 15.
    Narath, A.: Phys. Rev. 162, 320–332 (1967)ADSCrossRefGoogle Scholar
  16. 16.
    Zhou, R., Xing, L.Y., Wang, X.C., Jin, C.Q., Zheng, G.Q.: Phys. Rev. B 93, 060502 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Li, S., de la Cruz, C., Huang, Q., Chen, G.F., Xia, T.-L., Lou, J.L., Wang, N.L., Dai, P.C.: Phys. Rev. B 80, 020504 (2009)Google Scholar
  18. 18.
    Shimojima, T., Ishizaka, K., Ishida, Y., Katayama, N., Ohgushi, K., Kiss, T., Okawa, M., Togashi, T., Wang, X.-Y., Chen, C.-T., Watanabe, S., Kadota, R., Oguchi, T., Chainani, A., Shin, S.: Phys. Rev. Lett. 104, 057002 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Zheng, G.Q., Kitaoka, Y., Ishida, K., Asayama, K.: J. Phys. Soc. Jpn. 64, 2524 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Kawasaki, S., Tani, Y., Mabuchi, T., Kudo, K., Nishikubo, Y., Mitsuoka, D., Nohara, M., Zheng, G.-Q.: Phys. Rev. B 91(R), 060510 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Zhang, Y., He, C., Ye, Z.R., Jiang, J., Chen, F., Xu, M., Ge, Q.Q., Xie, B.P., Wei, J., Aeschlimann, M., Cui, X.Y., Shi, M., Hu, J.P., Feng, D.L.: Phys. Rev. B 85, 085121 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Li, Z., Sun, D.L., Lin, C.T., Su, Y.H., Hu, J.P., Zheng, G.Q.: Phys. Rev. B 83, 140506 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Song, Y., Regnault, L.-P., Zhang, C., Tan, G., Carr, S.V., Chi, S., Christianson, A.D., Xiang, T., Dai, P.: Phys. Rev. B 88, 134512 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Su, Y., Zhang, C., Li, T.: Phys. Lett. A 380, 2008–2012 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Physics and Beijing National Laboratory for Condensed Matter PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of PhysicsOkayama UniversityOkayamaJapan

Personalised recommendations