O2 Annealing Induced Superconductivity in FeTe1−x Se x : on the Origin of Superconductivity in FeTe Films

  • P. H. Zhao
  • H. F. Zhu
  • Y. J. Tian
  • D. L. Li
  • L. Ma
  • H. L. Suo
  • J. C. Nie
Original Paper


FeTe1−x Se x with x = 0 ∼ 0.13 polycrystalline samples was fabricated by solid-state reaction and annealed in oxygen. The magnetic and transport measurements illustrated that neither the as-grown nor the O2-annealed samples with x = 0.05 showed superconductivity. The as-grown samples with x = 0.07 ∼ 0.09 also showed no superconductivity but became filamentary superconducting after the O2 annealing. Significant enhancement of bulk superconductivity was achieved for the O2-annealed FeTe1−xSe x with x = 0.11. X-ray photoelectron spectroscopy measurements illustrated that the change of the chemical valence of the elements before and after the O2 annealing was not the main factor responsible for the occurrence of superconductivity. The superconducting transition was mainly caused by the suppression of antiferromagnetic ordering, due to the lattice shrinkage induced by the O2 annealing. These results may clarify the existing debate on the origin of the superconductivity in FeTe thin film.


FeTe1−xSex Superconductivity X-ray photoemission spectroscopy 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 10974019, 51172029, and 91121012), the Fundamental Research Funds for the Central Universities, and the Ministry of Science and Technology of China (Grant No. 2013CB921701). This work was also supported by the PetroChina Innovation Foundation (Grant No. 2015D-5006-0604).


  1. 1.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  2. 2.
    Rotter, M., Tegel, M., Johrendt, D., Schellenberg, I., Hermes, W., Pöttgen, R.: Phys. Rev. B 78, 020503 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Tapp, J.H., Tang, Z., Lv, B., Sasmal, K., Lorenz, B., Chu, P.C.W., Guloy, A.M.: Phys. Rev. B 78, 060505 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Hsu, F. -C., Luo, J.-Y., Yeh, K.-W., Chen, T.-K., Huang, T.-W., Wu, P.M., Lee, Y.-C., Huang, Y.-L., Chu, Y.-Y., Yan, D.-C.: Proc. Natl. Acad. Sci. 105, 14262 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Jeevan, H.S., Hossain, Z., Kasinathan, D., Rosner, H., Geibel, C., Gegenwart, P.: Phys. Rev. B 78, 092406 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Matsuishi, S., Inoue, Y., Nomura, T., Yanagi, H., Hirano, M., Hosono, H.: J. Am. Chem. Soc. 130, 14428 (2008)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Liu, Q., Lv, Y., Gao, W., Yang, L., Yu, R., Li, F., Jin, C.: Sol. St. Comm. 148, 538 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y.: Phys. C: Supercond. 469, 1027 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Han, Y., Li, W.Y., Cao, L.X., Wang, X.Y., Xu, B., Zhao, B.R., Guo, Y.Q., Yang, J.L.: Phys. Rev. Lett. 104, 017003 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Si, W., Jie, Q., Wu, L., Zhou, J., Gu, G., Johnson, P.D., Li, Q.: Phys. Rev. B 81, 092506 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Nie, Y.F., Telesca, D., Budnick, J.I., Sinkovic, B., Wells, B.O.: Phys. Rev. B 82, 020508 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, T., Hu, J., Qian, B., Fobes, D., Mao, Z., Bao, W., Reehuis, M., Kimber, S., Prokeš, K., Matas, S.: Nature mater. 9, 718 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Li, S., de la Cruz, C., Huang, Q., Chen, Y., Lynn, J.W., Hu, J., Huang, Y.-L., Hsu, F.-C., Yeh, K.-W., Wu, M.-K., Dai, P.: Phys. Rev. B 79, 054503 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Bao, W., Qiu, Y., Huang, Q., Green, M.A., Zajdel, P., Fitzsimmons, M.R., Zhernenkov, M., Chang, S., Fang, M., Qian, B., Vehstedt, E.K., Yang, J., Pham, H.M., Spinu, L., Mao, Z.Q.: Phys. Rev. Lett. 102, 247001 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Chen, G.F., Chen, Z.G., Dong, J., Hu, W.Z., Li, G., Zhang, X.D., Zheng, P., Luo, J.L., Wang, N.L.: Phys. Rev. B 79, 140509 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Hu, R., Bozin, E.S., Warren, J.B., Petrovic, C.: Phys. Rev. B 80, 214514 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Fang, M.H., Pham, H.M., Qian, B., Liu, T.J., Vehstedt, E.K., Liu, Y., Spinu, L., Mao, Z.Q.: Phys. Rev. B 78, 224503 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Sales, B.C., Sefat, A.S., McGuire, M.A., Jin, R.Y., Mandrus, D., Mozharivskyj, Y.: Phys. Rev. B 79, 094521 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Lumsden, M.D., Christianson, A.D.: J. Phys.: Condens. Matter. 22, 203203 (2010)ADSGoogle Scholar
  20. 20.
    Mizuguchi, Y., Takano, Y.: J. Phys. Soc. Jpn., 2001 (2010)Google Scholar
  21. 21.
    Zhang, Z.T., Yang, Z.R., Li, L., Pi, L., Tan, S., Zhang, Y.H.: J. Appl. Phys 111, 07E118 (2012)CrossRefGoogle Scholar
  22. 22.
    Moon, C.Y., Choi, H.J.: Phys. Rev. Lett. 104, 057003 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Telesca, D., Nie, Y., Budnick, J.I., Wells, B.O., Sinkovic, B.: Phys. Rev. B 85, 214517 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of ScienceChina University of PetroleumQingdaoPeople’s Republic of China
  2. 2.Department of PhysicsBeijing Normal UniversityBeijingPeople’s Republic of China
  3. 3.College of Materials Science and EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations