Advertisement

Influence of Nano CeO2 on the Microstructures and Current Density of Preform Optimized Infiltration Growth-Processed Bulk YBa2Cu3 O 7−δ Superconductors

  • P. Missak Swarup Raju
  • S. Pavan Kumar Naik
  • V. Seshu Bai
Original Paper
  • 133 Downloads

Abstract

The effect of the addition of nanometric ceria (CeO2) on the physical properties of YBa2Cu3 O 7−δ superconductors is investigated. Preform optimized infiltration growth (POIG) process emerged as one of the advanced processing techniques to obtain the uniform distribution of fine Y2BaCuO5 (Y-211) particles of the order of ∼1 μ m. Nanoparticles of CeO2 were added to Y-211 in 0, 2, 5 and 10 wt% through a novel process called Nano Dispersive Sol Casting and subjected to POIG process. Nanometric CeO2 particles were distributed homogeneously throughout the Y-211 preform without any agglomeration. The micrographs of the final composites indicate refinement in Y-211 particle size and presence of defects in various length scales, starting from few nanometers to few microns. As the CeO2 content increased, the Y-211 particle size refined below 1 µm and, for 10 wt% of doping, even smaller than 0.5 µm. Elemental analysis confirmed the formation of different phases in the CeO2-added composites, due to which the superconducting transition is shown broadening. The sample with 10 wt% doping exhibited a stable J c curve to high applied magnetic fields due to the presence of multiple peak fields. The present work demonstrates the introduction of fine microstructural defects for pinning the flux lines at different applied magnetic fields in POIG-processed YBCO composites.

Keywords

Superconductor Nanoparticles CeO2 Microstructure Current density 

Notes

Acknowledgments

A grant from the UGC-XI plan for FESEM is gratefully acknowledged. The authors thank the Center for Nanotechnology for the PPMS facility.

References

  1. 1.
    Mahmood, A., Chu, Y.S., Sung, T.H.: Supercond. Sci. Technol. 25, 045008 (2012)CrossRefADSGoogle Scholar
  2. 2.
    Cloots, R., Koutzarova, T., Mathieu, J.P., Ausloos, M.: Supercond. Sci. Technol. 18, R9 (2005)CrossRefADSGoogle Scholar
  3. 3.
    Chen, S.Y., Hsiao, Y.S., Chen, C.L., Yan, D.C., Chen, I.G., Wu, M.K.: Mater. Sci. Eng. B 151, 31 (2008)CrossRefGoogle Scholar
  4. 4.
    Murakami, M.: Supercond. Sci. Technol. 13, 448 (2000)CrossRefADSGoogle Scholar
  5. 5.
    Hull, J.R., Murakami, M.: Proc. IEEE Trans. Appl. Supercond. 92, 1705 (2004)Google Scholar
  6. 6.
    Yang, W.J., Wen, Z., Duan, Y., Chen, X.D., Qiu, M., Liu, Y., Lin, L.Z.: IEEE Trans. Appl. Supercond. 16, 1108 (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, I.G.: AAPPS Bull. 18, 17 (2008)Google Scholar
  8. 8.
    Jin, S., Tiefel, T.H., Sherwood, R.C., Davis, M.E., van Dover, R.B., Kammlott, G.W., Fastnacht, R.A., Keith, H.D.: Appl. Phys. Lett. 52, 2074 (1988)CrossRefADSGoogle Scholar
  9. 9.
    Chen, Y.L., Chan, H.M., Harmer, M.P., Todt, V.R., Sengupta, S., Shi, D.: Physica C 234, 232 (1994)CrossRefADSGoogle Scholar
  10. 10.
    Sudhakar Reddy, E., Rajasekharan, T.: Supercond. Sci. Technol. 11, 523 (1998)CrossRefADSGoogle Scholar
  11. 11.
    Iida, K., Hari Babu, N., Shi, Y., Cardwell, D.A.: Supercond. Sci. Technol. 18, 1421 (2005)CrossRefADSGoogle Scholar
  12. 12.
    Devendra Kumar, N., Rajasekharan, T., Muraleedharan, K., Banerjee, A., Seshubai, V.: Supercond. Sci. Technol. 23, 105020 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Devendra Kumar, N., Rajasekharan, T., Ravi, C.G., Vummethala, S.: IEEE Trans. Appl. Supercond. 21, 3612–3620 (2011)CrossRefADSGoogle Scholar
  14. 14.
    Lee, D.F., Selvamanickam, V., Salama, K.: Phys. C 202, 83 (1992)CrossRefADSGoogle Scholar
  15. 15.
    Haugan, T., Barnes, P.N., Wheeler, R., Meisenko, F., Sumption, M.: Nature 430, 867 (2004)CrossRefADSGoogle Scholar
  16. 16.
    Yang, W.M., Zhou, L., Feng, Y., Zhang, P.X., Wu, M.Z., Zhang, C.P., Wang, J.R., Du, Z.H., Wang, F.Y., Yu, Z.M., Wu, X.Z., Gawalek, W., Gornert, P.: Phys. C 305, 269 (1998)CrossRefADSGoogle Scholar
  17. 17.
    Xu, C., Hu, A., Sakai, N., Izumi, N., Hirabayashi, I.: Phys. C 445, 357 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Kim, C.J., Qadir, N., Mahmood, A., Han, Y.H., Sung, T.H.: Phys. C 463–465, 344–347 (2007)CrossRefGoogle Scholar
  19. 19.
    Zhao, Y., Cheng, C.H., Wang, J.S.: Supercond. Sci. Technol. 18, S43–S46 (2005)CrossRefADSGoogle Scholar
  20. 20.
    Delamare, M.P., Monot, I., Wang, J., Provost, J., Desgardin, G.: Supercond. Sci. Technol. 9, 534 (1996)CrossRefADSGoogle Scholar
  21. 21.
    Volochovan, D., Diko, P., Antal, V., Radušovska, M., Piovarc, I.S.: J. Cryst. Growth 356, 75 (2012)CrossRefADSGoogle Scholar
  22. 22.
    Ogdwa, N., Hirdbayashi, I., Tanaka, S.: Phys. C 177, 101 (1991)CrossRefADSGoogle Scholar
  23. 23.
    Ogawa, N., Yoshida, M., Hirabayashi, I., Tanaka, S.: Supercond. Sci. Technol. 5, S89 (1992)CrossRefADSGoogle Scholar
  24. 24.
    Cima, M.C., Flemings, M.C., Figueredo, A.F., Nakade, M., Ishii, H., Brady, H.D., Haggerty, J.S.: J. Appl. Phys. 71, 1868 (1992)CrossRefGoogle Scholar
  25. 25.
    Swarup Raju, P.M., Seshu bai, V., Rajasekharan, T.: Mater. Chem. Phys. 161, 59–64 (2015)CrossRefGoogle Scholar
  26. 26.
    Missak Swarup Raju, P., Devendra kumar, N., Pavan Kumar Naik, S, Rajasekharan, T., Seshubai, V.: J. Supercond. Nov. Magn. 27, 2277 (2014)CrossRefGoogle Scholar
  27. 27.
    Devendra Kumar, N., Rajasekharan, T., Seshubai, V.: Phys. C 495, 55 (2013)CrossRefADSGoogle Scholar
  28. 28.
    Missak Swarup Raju, P.: Infiltration Growth Processing of YBCO Nanocomposites: Shape Forming, Microstructural and Magnetic Studies Ph.D. Thesis, University of Hyderabad (2012)Google Scholar
  29. 29.
    Bean, C.P.: Phys. Rev. Lett. 8, 250 (1962)CrossRefADSGoogle Scholar
  30. 30.
    Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schneemeyer, L.F., Waszczak, J.V.: Appl. Phys. Lett. 55, 283 (1989)CrossRefADSGoogle Scholar
  31. 31.
    Kim, C.J., Hong, G.W.: Supercond. Sci. Technol. 12, R27–R41 (1999)CrossRefADSGoogle Scholar
  32. 32.
    Vilalta, N., Sandiumenge, F., Pinol, S., Obradors, X.: J. Mater. Res. 12, 1 (1997)CrossRefGoogle Scholar
  33. 33.
    Pavan Kumar Naik, S., Missak Swarup Raju, P., Rajasekharan, T., Seshubai, V.: Limited infiltration due to reactive sintering of nano-Sm2 O 3 with preforms—its effect on (Y, Sm)Ba2Cu3 O 7−δ superconductors. Supercond. Sci. Technol. 29, 115001 (2016)Google Scholar
  34. 34.
    Pavan Kumar Naik, S., Missak Swarup Raju, P., Rajasekharan, T., Seshubai, V.: Mater. Che. and Phy. 182, 503 (2016)CrossRefGoogle Scholar
  35. 35.
    Dew-Hughes, D.: Low temperature. Physics 27, 713 (2001)Google Scholar
  36. 36.
    Kobayashi, S., Kaneko, T., Kato, T., Fujikami, J., Sato, K.: Phys. C 258, 336 (1996)CrossRefADSGoogle Scholar
  37. 37.
    Koblischka, M.R., Murakami, M.: Supercond. Sci. Technol. 13, 738 (2000)CrossRefADSGoogle Scholar
  38. 38.
    Suematsu, H., Okamura, H., Nagaya, S., Yamauchi, H.: Supercond. Sci. Technol. 12, 274 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. Missak Swarup Raju
    • 1
  • S. Pavan Kumar Naik
    • 2
    • 3
  • V. Seshu Bai
    • 2
  1. 1.Department of PhysicsGITAM UniversityHyderabadIndia
  2. 2.School of PhysicsUniversity of HyderabadHyderabadIndia
  3. 3.Currently working at Superconducting Materials Laboratory, Department of Materials Science and EngineeringShibaura Institute of TechnologyTokyoJapan

Personalised recommendations