Skip to main content
Log in

Influence of Nano CeO2 on the Microstructures and Current Density of Preform Optimized Infiltration Growth-Processed Bulk YBa2Cu3 O 7−δ Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effect of the addition of nanometric ceria (CeO2) on the physical properties of YBa2Cu3 O 7−δ superconductors is investigated. Preform optimized infiltration growth (POIG) process emerged as one of the advanced processing techniques to obtain the uniform distribution of fine Y2BaCuO5 (Y-211) particles of the order of ∼1 μ m. Nanoparticles of CeO2 were added to Y-211 in 0, 2, 5 and 10 wt% through a novel process called Nano Dispersive Sol Casting and subjected to POIG process. Nanometric CeO2 particles were distributed homogeneously throughout the Y-211 preform without any agglomeration. The micrographs of the final composites indicate refinement in Y-211 particle size and presence of defects in various length scales, starting from few nanometers to few microns. As the CeO2 content increased, the Y-211 particle size refined below 1 µm and, for 10 wt% of doping, even smaller than 0.5 µm. Elemental analysis confirmed the formation of different phases in the CeO2-added composites, due to which the superconducting transition is shown broadening. The sample with 10 wt% doping exhibited a stable J c curve to high applied magnetic fields due to the presence of multiple peak fields. The present work demonstrates the introduction of fine microstructural defects for pinning the flux lines at different applied magnetic fields in POIG-processed YBCO composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mahmood, A., Chu, Y.S., Sung, T.H.: Supercond. Sci. Technol. 25, 045008 (2012)

    Article  ADS  Google Scholar 

  2. Cloots, R., Koutzarova, T., Mathieu, J.P., Ausloos, M.: Supercond. Sci. Technol. 18, R9 (2005)

    Article  ADS  Google Scholar 

  3. Chen, S.Y., Hsiao, Y.S., Chen, C.L., Yan, D.C., Chen, I.G., Wu, M.K.: Mater. Sci. Eng. B 151, 31 (2008)

    Article  Google Scholar 

  4. Murakami, M.: Supercond. Sci. Technol. 13, 448 (2000)

    Article  ADS  Google Scholar 

  5. Hull, J.R., Murakami, M.: Proc. IEEE Trans. Appl. Supercond. 92, 1705 (2004)

    Google Scholar 

  6. Yang, W.J., Wen, Z., Duan, Y., Chen, X.D., Qiu, M., Liu, Y., Lin, L.Z.: IEEE Trans. Appl. Supercond. 16, 1108 (2006)

    Article  Google Scholar 

  7. Chen, I.G.: AAPPS Bull. 18, 17 (2008)

    Google Scholar 

  8. Jin, S., Tiefel, T.H., Sherwood, R.C., Davis, M.E., van Dover, R.B., Kammlott, G.W., Fastnacht, R.A., Keith, H.D.: Appl. Phys. Lett. 52, 2074 (1988)

    Article  ADS  Google Scholar 

  9. Chen, Y.L., Chan, H.M., Harmer, M.P., Todt, V.R., Sengupta, S., Shi, D.: Physica C 234, 232 (1994)

    Article  ADS  Google Scholar 

  10. Sudhakar Reddy, E., Rajasekharan, T.: Supercond. Sci. Technol. 11, 523 (1998)

    Article  ADS  Google Scholar 

  11. Iida, K., Hari Babu, N., Shi, Y., Cardwell, D.A.: Supercond. Sci. Technol. 18, 1421 (2005)

    Article  ADS  Google Scholar 

  12. Devendra Kumar, N., Rajasekharan, T., Muraleedharan, K., Banerjee, A., Seshubai, V.: Supercond. Sci. Technol. 23, 105020 (2010)

    Article  ADS  Google Scholar 

  13. Devendra Kumar, N., Rajasekharan, T., Ravi, C.G., Vummethala, S.: IEEE Trans. Appl. Supercond. 21, 3612–3620 (2011)

    Article  ADS  Google Scholar 

  14. Lee, D.F., Selvamanickam, V., Salama, K.: Phys. C 202, 83 (1992)

    Article  ADS  Google Scholar 

  15. Haugan, T., Barnes, P.N., Wheeler, R., Meisenko, F., Sumption, M.: Nature 430, 867 (2004)

    Article  ADS  Google Scholar 

  16. Yang, W.M., Zhou, L., Feng, Y., Zhang, P.X., Wu, M.Z., Zhang, C.P., Wang, J.R., Du, Z.H., Wang, F.Y., Yu, Z.M., Wu, X.Z., Gawalek, W., Gornert, P.: Phys. C 305, 269 (1998)

    Article  ADS  Google Scholar 

  17. Xu, C., Hu, A., Sakai, N., Izumi, N., Hirabayashi, I.: Phys. C 445, 357 (2006)

    Article  ADS  Google Scholar 

  18. Kim, C.J., Qadir, N., Mahmood, A., Han, Y.H., Sung, T.H.: Phys. C 463–465, 344–347 (2007)

    Article  Google Scholar 

  19. Zhao, Y., Cheng, C.H., Wang, J.S.: Supercond. Sci. Technol. 18, S43–S46 (2005)

    Article  ADS  Google Scholar 

  20. Delamare, M.P., Monot, I., Wang, J., Provost, J., Desgardin, G.: Supercond. Sci. Technol. 9, 534 (1996)

    Article  ADS  Google Scholar 

  21. Volochovan, D., Diko, P., Antal, V., Radušovska, M., Piovarc, I.S.: J. Cryst. Growth 356, 75 (2012)

    Article  ADS  Google Scholar 

  22. Ogdwa, N., Hirdbayashi, I., Tanaka, S.: Phys. C 177, 101 (1991)

    Article  ADS  Google Scholar 

  23. Ogawa, N., Yoshida, M., Hirabayashi, I., Tanaka, S.: Supercond. Sci. Technol. 5, S89 (1992)

    Article  ADS  Google Scholar 

  24. Cima, M.C., Flemings, M.C., Figueredo, A.F., Nakade, M., Ishii, H., Brady, H.D., Haggerty, J.S.: J. Appl. Phys. 71, 1868 (1992)

    Article  Google Scholar 

  25. Swarup Raju, P.M., Seshu bai, V., Rajasekharan, T.: Mater. Chem. Phys. 161, 59–64 (2015)

    Article  Google Scholar 

  26. Missak Swarup Raju, P., Devendra kumar, N., Pavan Kumar Naik, S, Rajasekharan, T., Seshubai, V.: J. Supercond. Nov. Magn. 27, 2277 (2014)

    Article  Google Scholar 

  27. Devendra Kumar, N., Rajasekharan, T., Seshubai, V.: Phys. C 495, 55 (2013)

    Article  ADS  Google Scholar 

  28. Missak Swarup Raju, P.: Infiltration Growth Processing of YBCO Nanocomposites: Shape Forming, Microstructural and Magnetic Studies Ph.D. Thesis, University of Hyderabad (2012)

  29. Bean, C.P.: Phys. Rev. Lett. 8, 250 (1962)

    Article  ADS  Google Scholar 

  30. Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schneemeyer, L.F., Waszczak, J.V.: Appl. Phys. Lett. 55, 283 (1989)

    Article  ADS  Google Scholar 

  31. Kim, C.J., Hong, G.W.: Supercond. Sci. Technol. 12, R27–R41 (1999)

    Article  ADS  Google Scholar 

  32. Vilalta, N., Sandiumenge, F., Pinol, S., Obradors, X.: J. Mater. Res. 12, 1 (1997)

    Article  Google Scholar 

  33. Pavan Kumar Naik, S., Missak Swarup Raju, P., Rajasekharan, T., Seshubai, V.: Limited infiltration due to reactive sintering of nano-Sm2 O 3 with preforms—its effect on (Y, Sm)Ba2Cu3 O 7−δ superconductors. Supercond. Sci. Technol. 29, 115001 (2016)

  34. Pavan Kumar Naik, S., Missak Swarup Raju, P., Rajasekharan, T., Seshubai, V.: Mater. Che. and Phy. 182, 503 (2016)

    Article  Google Scholar 

  35. Dew-Hughes, D.: Low temperature. Physics 27, 713 (2001)

    Google Scholar 

  36. Kobayashi, S., Kaneko, T., Kato, T., Fujikami, J., Sato, K.: Phys. C 258, 336 (1996)

    Article  ADS  Google Scholar 

  37. Koblischka, M.R., Murakami, M.: Supercond. Sci. Technol. 13, 738 (2000)

    Article  ADS  Google Scholar 

  38. Suematsu, H., Okamura, H., Nagaya, S., Yamauchi, H.: Supercond. Sci. Technol. 12, 274 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A grant from the UGC-XI plan for FESEM is gratefully acknowledged. The authors thank the Center for Nanotechnology for the PPMS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pavan Kumar Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swarup Raju, P.M., Kumar Naik, S.P. & Bai, V.S. Influence of Nano CeO2 on the Microstructures and Current Density of Preform Optimized Infiltration Growth-Processed Bulk YBa2Cu3 O 7−δ Superconductors. J Supercond Nov Magn 30, 877–883 (2017). https://doi.org/10.1007/s10948-016-3912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3912-5

Keywords

Navigation