Experimental and Numerical Analysis of Equivalent Elastic Properties for Bi-2212 and YBCO Conductors

  • Liyuan Liu
  • Wei Chen
  • Haiyang Zhang
  • Chengshan Li
  • Qinbing Hao
  • Xinsheng Yang
  • Yong Zhao
Original Paper
  • 162 Downloads

Abstract

For mechanical design and optimization of high field HTS magnet, predicting elastic properties of Bi-2212 and YBCO conductors was of great importance. Experimental, numerical, and analytical methods could be used to predict the elastic properties of Bi-2212 and YBCO conductors. Due to the limitation of experiment, the elastic properties along a length direction of Bi-2212 and YBCO conductors were obtained by a tensile test. In this work, the numerical homogenization based on a finite element method was used for predicting the other elastic constants of Bi-2212 and YBCO conductors, and the analytical homogenization was adopted for the further validation of the numerical results. Compared with the measured data, the prediction of numerical homogenized approach was feasible. The analytical and numerical results were basically in accordance with experimental data, demonstrating the feasibility of numerical approach to predict the elastic properties of Bi-2212 conductors as well as the two-step analytical method to predict the elastic properties of YBCO conductor.

Keywords

Bi-2212 BCO Equivalent elastic properties Numerical homogenization Analytical homogenization 

Notes

Acknowledgments

This work was supported by the National Magnetic Confinement Fusion Science Program (Grant Nos. 2011GB112001 and 2013GB110001), the Program of International S&T Cooperation (Grant No. 2013DFA51050), the National Nature Science Foundation of China (Grant Nos. 51271155, 51377138, and 51302231), and the Fundamental Research Funds for the Central Universities (SWJTU2682016ZDPY10).

References

  1. 1.
    Obradors, X., Puig, T.: Supercond. Sci. Technol. 27, 044003 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Melhem, Z., Ball, S., Chappell, S.: Physics Procedia. 36, 805 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Melhem, Z., Ball, S., Jokinen, A., Chappell, S.P.G.: IEEE Trans. Appl. Supercond. 23, 4603104 (2013)CrossRefGoogle Scholar
  4. 4.
    Zhang, M., Yuan, W., Hilton, D.K., Canassy, M.D., Trociewitz, U.P.: Supercond. Sci. Technol. 27, 095010 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Choi, Y.S., Kim, D.L., Shin, D.W.: IEEE Trans. Appl. Supercond. 22, 4701104 (2012)CrossRefGoogle Scholar
  6. 6.
    Mbaruku, A.L., Le, Q.V., Song, H., Schwartz, J.: Supercond. Sci. Technol. 23, 115014 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Lombardo, V., Barzi, E., Turrioni, D., Zlobin, A.V.: IEEE Trans. Appl. Supercond. 21, 3247 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Godeke, A., Acosta, P., Cheng, D., Dietderich, D.R., Mentink, M.G.T., Prestemon, S.O., Sabbi, G.L., Meinesz, M., Hong, S., Huang, Y., Miao, H., Parrell, J.: Supercond. Sci. Technol. 23, 034022 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, S., Li, C., Hao, Q., Ma, X., Lu, T., Zhang, P.: Supercond. Sci. Technol. 28, 045014 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Li, C., Zhang, S., Gao, L., Hao, Q., Bai, L., Zhang, P.: J. Mater. Sci.: Mater. Elec. 26, 3583 (2015)Google Scholar
  11. 11.
    Song, H., Brownsey, P., Zhang, Y., Waterman, J., Fukushima, T., Hazelton, D.: IEEE Trans. Appl. Supercond. 23, 4600806 (2013)CrossRefGoogle Scholar
  12. 12.
    Hazelton, D.W., Selvamanickam, V., Duval, J.M., Larbalestier, D.C., Markiewicz, W.D., Weijers, H.W., Holtz, R.L.: IEEE Trans. Appl. Supercond. 19, 2218 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Boso, D.P., Lefik, M., Schrefler, B.A.: Cryogenics 45, 259 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Sun, W., Tzeng, J.T.: Comp. Struc. 58, 411–421 (2002)CrossRefGoogle Scholar
  15. 15.
    Pes, C., Devaux, M., Mayri, C., Rey, J.M.: IEEE Trans. Appl. Supercond. 24, 4001105 (2014)CrossRefGoogle Scholar
  16. 16.
    Meaud, J., Hulbert, G.M.: J. Comp. Mater. 47, 3237 (2013)CrossRefGoogle Scholar
  17. 17.
    Gou, X., Shen, Q.: Phys. C 475, 5 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Gou, X., Zhou, X.: J. Supercond. Nov. Magn. 26, 2115 (2013)CrossRefGoogle Scholar
  19. 19.
    Dai, C., Liu, B., Qin, J., Liu, F., Wu, Y., Zhou, C.: IEEE Trans. Appl. Supercond. 25, 6400304 (2015)Google Scholar
  20. 20.
    Dizon, J.R.C., Gorospe, A.B., Shin, H.S.: Supercond. Sci. Technol. 27, 055023 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Boso, D.P., Lefik, M., Schrefler, B.A.: Cryogenics 46, 569 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Özkurt, B.: J. Supercond. Nov. Magn. 27, 2407 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Liyuan Liu
    • 1
  • Wei Chen
    • 1
  • Haiyang Zhang
    • 1
  • Chengshan Li
    • 2
  • Qinbing Hao
    • 2
  • Xinsheng Yang
    • 1
  • Yong Zhao
    • 1
  1. 1.Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education)Superconductivity and New Energy R&D Center Southwest Jiaotong UniversityChengduChina
  2. 2.Northwest Institute for Nonferrous Metal ResearchXi’anChina

Personalised recommendations