Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 4, pp 1053–1060 | Cite as

Mn-Doped In2O3 Nanoparticles: a Simple Synthesis and Room-Temperature Ferromagnetism

  • Kwanruthai Wongsaprom
  • Rongnapha Jareanboon
  • Sirinthon Kingcha
  • Supree Pinitsoontorn
  • Wichaid Ponhan
Original Paper

Abstract

In this research, Mn-doped In2O3 nanoparticles were successfully synthesized by a simple thermal decomposition method using indium acetate and manganese acetate tetrahydrate as the starting materials. The precursor was characterized by thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) to obtain the thermal decomposition and crystallization temperature. The precursor was calcined at 500–600C in air for 2 h to obtain nanoparticles of In2O3 and Mn-doped In2O3. The phase composition of calcined samples was studied by X-ray diffraction (XRD). The XRD results confirmed the formation of In2O3 phase with cubic structure. The particle sizes of the samples were found to be 12–22 nm as evaluated by the X-ray line broadening method. The corresponding selected area electron diffraction analysis further confirmed the formation of the cubic structure of In2O3 without any impurity phases. The optical properties of the samples were investigated by optical absorption. The estimated band gap of the samples was in the range of 3.30–3.45 eV. X-ray photoelectron spectroscopy was performed and played an important role to confirm and understand in terms of qualitative In and Mn oxidation states causing a ferromagnetic properties in the Mn-doped In2O3 sample. Room-temperature ferromagnetism was investigated by a vibrating sample magnetometer. The undoped samples exhibit a diamagnetic behavior, whereas the Mn-doped In2O3 samples are ferromagnetic, having the magnetizations of 0.25–0.62 memu/g at 15 kOe. Successful synthesis of Mn-doped nanoparticles with room-temperature ferromagnetism was of great importance in both technological and theoretical aspects.

Keywords

Indium oxide Room-temperature ferromagnetism Magnetic properties Synthesis Nanoparticles 

Notes

Acknowledgments

The authors would like to thank the Department of Physics, Khon Kaen University, for providing the VSM facilities. This work was financially supported by the Project for Higher Education Research Promotion and National Research University Development and Mahasarakham University, Thailand.

References

  1. 1.
    Philip, J., Punnuoose, A., Kim, B. I., Reddy, K. M., Layne, S., Holmes, J. O., Satpati, B., Leclair, P. R., Santos, T. S., Moodera, J. S.: Nat. Mater. 5, 298 (2006)CrossRefADSGoogle Scholar
  2. 2.
    He, J., Xu, S., Yoo, Y. K., Xue, Q., Lee, H. -C., Cheng, S., Xiang, X. -D., Dionne, G. F.: Appl. Phys. Lett. 86, 052503 (2005)CrossRefADSGoogle Scholar
  3. 3.
    Peleckis, G., Wang, X. L., Dou, S. X.: Appl. Phys. Lett. 88, 132507 (2006)CrossRefADSGoogle Scholar
  4. 4.
    Peleckis, G., Wang, X., Dou, S. X.: Appl. Phys. Lett. 89, 022501 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Chu, D., Zeng, Y. -P., Jiang, D.: Appl. Phys. Lett. 92, 182507 (2008)CrossRefADSGoogle Scholar
  6. 6.
    Singhal, A., Achary, S. N., Manjanna, J., Jayakumar, O. D., Kadam, R. M., Tyagi, A. K.: J. Phys. Chem. C 113, 3600 (2009)CrossRefGoogle Scholar
  7. 7.
    Jiang, F. -X., Xu, X. -H., Zhang, J., Wu, H. -S., Gehring, G. A.: Appl. Surf. Sci. 255, 3655 (2009)CrossRefADSGoogle Scholar
  8. 8.
    Herrera, M., Cremades, A., Maestre, D., Piqueras, J.: Acta Mater. 75, 51 (2014)CrossRefGoogle Scholar
  9. 9.
    Gupta, R. K., Ghosh, K., Kahol, P. K.: Mater. Lett. 64, 2022 (2010)CrossRefGoogle Scholar
  10. 10.
    Yan, S., Ge, S., Zuo, Y., Qiao, W., Zhang, L.: Scripta Meter. 61, 387 (2009)CrossRefGoogle Scholar
  11. 11.
    Yan, S., Ge, S., Qiao, W., Ge, S., Xu, F., Xi, L.: J. Magn. Magn. Mater. 323, 264 (2011)CrossRefADSGoogle Scholar
  12. 12.
    Sun, Q., Zeng, Y. -P., Jiang, D.: Solid State Commun. 151, 1220 (2011)CrossRefADSGoogle Scholar
  13. 13.
    Hong, N. H., Sakai, J., Huong, N. T., Brize, V.: J. Magn. Magn. Mater. 302, 228 (2006)CrossRefADSGoogle Scholar
  14. 14.
    Wongsaprom, K., Sonsupap, S., Maensiri, S., Kidkhunthod, P.: Appl. Phys. A-Mater. 121, 239 (2015)CrossRefADSGoogle Scholar
  15. 15.
    Sai Krishna, N., Kaleemulla, S., Amarendra, G., Madhusudhana Rao, N., Krishnamoorthi, C., Rigana Begam, M., Omkaram, I., Sreekantha Reddy, D.: Physica B 6, 466 (2015)Google Scholar
  16. 16.
    Ruan, K. B., Ho, H. W., Khan, R. A., Ren, P., Song, W. D., Huan, A. C. H., Wang, L.: Solid State Commun. 150, 2158 (2010)CrossRefADSGoogle Scholar
  17. 17.
    Meng, X., Tang, L., Li, J.: J. Phys. Chem. C 114, 17569 (2010)CrossRefGoogle Scholar
  18. 18.
    Bryan, J. D., Santangelo, S. A., Keveren, S. C., Gamelin, D. R.: J. Am. Chem. Soc. 127, 15568 (2005)CrossRefGoogle Scholar
  19. 19.
    Bryan, J. D., Gamelin, D. R.: Prog. Inorg. Chem. 54, 47 (2005)CrossRefGoogle Scholar
  20. 20.
    Al-Resayes, S. I.: J. Saudi Chem. Soc. 13, 243 (2009)CrossRefGoogle Scholar
  21. 21.
    Al-Resayes, S. I.: Arab. J. Chem. 3, 191 (2010)CrossRefGoogle Scholar
  22. 22.
    Yang, Y., Chen, H., Zhao, B., Bao, X.: J. Cryst. Growth. 263, 447 (2004)CrossRefADSGoogle Scholar
  23. 23.
    Day, S., Ghose, J.: Mater. Res. Bull. 38, 1653 (2003)CrossRefGoogle Scholar
  24. 24.
    Farvid, S. S., Dave, N., Wang, T., Radovanovic, P. V.: J. Phys. Chem. 113, 15928 (2009)CrossRefGoogle Scholar
  25. 25.
    Farvid, S. S., Sabergharesou, T., Hutfluss, L. N., Hegde, M., Prouzet, E., Radovanovic, P. V.: J. Am. Chem. Soc. 136, 7669 (2014)CrossRefGoogle Scholar
  26. 26.
    Anand, K., Kaur, J., Singh, R. C., Thangaraj, R.: Ceram. Int. 42, 10957 (2016)CrossRefGoogle Scholar
  27. 27.
    Yan, S. M., Qiao, W., Zhong, W., Au, C. T., Dou, Y. W.: Appl. Phys. Lett. 104, 062404 (2014)CrossRefADSGoogle Scholar
  28. 28.
    Xu, T. S., Qiao, R. M., Tian, Y. F., Yan, S. S., Zhang, K., Cao, Y. L., Kang, S. S., Chen, Y. X., Liu, G. L., Mei, L. M.: Appl. Phys. Lett. 103, 202411 (2013)CrossRefADSGoogle Scholar
  29. 29.
    Tien, L. -C., Hsieh, Y. -Y.: Mater. Res. Bull. 60, 690 (2014)CrossRefGoogle Scholar
  30. 30.
    Ayeshamariam, A., Bououdina, M., Sanjeeviraja, C.: Mat. Sci. Semicon. Proc. 16, 686 (2013)CrossRefGoogle Scholar
  31. 31.
    Prakash, R., Kumar, S., Ahmed, F., Lee, C. G., Song, J.: Thin Solid Films. 519, 8243 (2011)CrossRefADSGoogle Scholar
  32. 32.
    Yamaura, H., Jinkawa, T., Tamaki, J., Moriya, K., Miura, N., Yamazoe, N.: Sensor Actuat B-Chem. 35, 325 (1996)CrossRefGoogle Scholar
  33. 33.
    Faur, M., Faur, M., Jayne, D. T., Goradia, M., Goradia, C.: Surf. Interface Anal. 15, 641 (1990)CrossRefGoogle Scholar
  34. 34.
    Liu, L., Wu, S., Dong, Y., Lü, S.: Corros. Sci. 104, 236 (2016)CrossRefGoogle Scholar
  35. 35.
    Bozzini, B., Amati, M., Bocchetta, P., Dal Zilio, S., Knop-Gericke, A., Vesselli, E., Kiskinova, M.: Electrochim. Acta. 174, 532 (2015)CrossRefGoogle Scholar
  36. 36.
    Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., Smart, R.St.C.: Appl. Surf. Sci. 257, 2717 (2011)CrossRefADSGoogle Scholar
  37. 37.
    Kim, K., Jeong, J., Azad, A. K., Jin, S. B., Kim, J. H.: Appl. Surf. Sci. 365, 38 (2016)CrossRefADSGoogle Scholar
  38. 38.
    Allen, G. C., Harri, S. J., Jutson, J. A., Dyke, J. M.: Appl. Surf. Sci. 37, 111 (1989)CrossRefADSGoogle Scholar
  39. 39.
    Di Castro, V., Polzonetti, G.: J. Electron Spectrosc. Relat. Phemon. 48, 117 (1989)CrossRefGoogle Scholar
  40. 40.
    Tan, B. J., Klabunde, K. J., Sherwood, P. M. A.: J. Am. Chem. Soc. 113, 855 (1991)CrossRefGoogle Scholar
  41. 41.
    Sonsupap, S., Ponhan, W., Wongsaprom, K.: J. Supercond. Nov. Magn. 29, 1641 (2016)CrossRefGoogle Scholar
  42. 42.
    Schwartz, D. A., Norberg, N. S., Nguyen, Q. P., Parker, J. M., Gamelin, D. R.: J. Am. Chem. Soc. 125, 13205 (2003)CrossRefGoogle Scholar
  43. 43.
    An, Y., Wang, S., Duan, L., Liu, J., Wu, Z.: Appl. Phys. Lett. 102, 212411 (2013)CrossRefADSGoogle Scholar
  44. 44.
    Vazquez-Olmos, A. R., Gomez-Peralta, J. I., Sato-Berru, R. Y., Fernandez-Osorio, A. L.: J. Alloys. Compd. 615, s522 (2014)CrossRefGoogle Scholar
  45. 45.
    Peleckis, G., Wang, X. L., Dou, S. X.: J. Magn. Magn. Mater. 301, 308 (2006)CrossRefADSGoogle Scholar
  46. 46.
    Gupta, A., Cao, H., Parekh, K., Rao, K. V., Raju, A. R., Waghmare, U. V.: J. Appl. Phys. 101, 09N513 (2007)CrossRefGoogle Scholar
  47. 47.
    Perales-Perez, O., Parra-Palomino, A., Singhal, R., Voyles, P. M., Zhu, Y., Jia, W., Tomar, M. S.: Nanotechnology 18, 315606 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kwanruthai Wongsaprom
    • 1
  • Rongnapha Jareanboon
    • 1
  • Sirinthon Kingcha
    • 1
  • Supree Pinitsoontorn
    • 2
  • Wichaid Ponhan
    • 3
  1. 1.Physical Materials Science Unit Research, Department of Physics, Faculty of ScienceMahasarakham UniversityMaha sarakhamThailand
  2. 2.Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.Program of Physics, Faculty of Science and TechnologyRajabhat Mahasarakham UniversityMaha sarakhamThailand

Personalised recommendations