Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 4, pp 1025–1034 | Cite as

Crystallisation and Magnetic Properties of Cu/Fe-Codoped Terbium Oxychloride Nanocrystalline Synthesised by Solvothermal Route: Significant Effect of Hydrogenation

Original Paper


Terbium oxychloride (TbOCl) nanopowders in pure state and codoped with Cu/Fe dopants were synthesised by a solvothermal route followed by a subsequent heat treatment process. Their structural and optical properties were studied as a function of post-annealing treatment conditions (temperature and atmosphere). The optical properties were studied by the diffuse reflection spectroscopy (DRS) method. Actually, the present work focused on the possible creation of stable room-temperature ferromagnetic (RT-FM) properties within TbOCl. Therefore, dopant impurity iron (Fe2+) ions were used as stable sources of FM properties. However, low doping concentration of Fe2+ could not be able to create FM properties unless followed by annealing in hydrogen-gas atmosphere (hydrogenation). The transition metal (TM) dopant ions (Fe and Cu) could play a role of catalyst in order to dissociate H2 molecules into H atoms during a hydrogenation process. Moreover, dopant Cu ions were also used as donors of polarons to the oxygen vacancies in order to enhance the electronic medium (electromagnetic interference) for spin-spin (SS) long-range interaction. The magnetic measurements reveal that hydrogenated Cu/Fe-codoped TbOCl nanopowders have RT-FM properties with saturation magnetisation of ∼2.2 emu/g. Thus, TbOCl nanocrystals could be used as a potential candidate for optical applications with tailored magnetic properties.


Fe-doped TbOCl Created novel ferromagnetism Hydrogen treatment 


  1. 1.
    Golovkova, S.I., Gurvich, A.M., Savikhina, T.I., Starick, D., Birman, T.A., Herzog, G., Katomina, R.V., Kra, G.: J. Appl. Spectroscopy 35, 1208–1212 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    Marsal, A., Rossinyol, E., Bimbela, F., Tellez, C., Coronas, J., Cornet, A.: Sens Actuators B 109, 38–43 (2005)CrossRefGoogle Scholar
  3. 3.
    Maslen, E., Streltsov, V.: N. Streltsova, Acta Crystallogr 51, 929–939 (1996)CrossRefGoogle Scholar
  4. 4.
    Kong, Q., Wang, J., Dong, X., Yu, W., Liu, G.: J. Mater Sci. 49, 2919–2931 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Kim, D., Park, S., Kim, S., Kang, S.-G., Park, J.-C.: Inorg. Chem. 53, 11966–11973 (2014)CrossRefGoogle Scholar
  6. 6.
    Holsa, J., Lahtinen, M., Lastusaari, M., Valkonen, J., Viljanen, J.: J. Solid State Chem. 165, 48–55 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Mahajan, S.V., Hart, J., Hood, J., Everheart, A., Redigolo, M.L., Koktysh, D.S., Payzant, E.A., Dickerson, J.H.: J. Rare Earths 26, 131–135 (2008)CrossRefGoogle Scholar
  8. 8.
    Czylkowska, A., Czakis-Sulikowska, D., Kaczmarek, A., Markiewicz, M.: J. Therm. Anal. Calorim. 105, 331–339 (2011)CrossRefGoogle Scholar
  9. 9.
    Holsa, J., Lamminmaki, R.-J., Lastusaari, M., Porcher, P., Puche, R.S.: J. Alloys Compds 300–301, 45–54 (2000a)CrossRefGoogle Scholar
  10. 10.
    Holsa, J., Lamminmaki, R.-J., Lastusaari, M., Porcher, P., Puche, R.S.: J. Alloys Compds 303–304, 498–504 (2000b)CrossRefGoogle Scholar
  11. 11.
    Kaminski, A., Galitski, V. M., Das Sarma, S.: Phys. Rev. B 70, 115216 (2004). (8 pages)ADSCrossRefGoogle Scholar
  12. 12.
    Wolff, P. A.: Semimagnetic semiconductors and dilute magnetic semiconductors, Averous, M. (ed.) . Plenum, NY (1991)Google Scholar
  13. 13.
    Lewis, E.A., Le, D., Murphy, C.J., Jewell, A.D., Mattera, M.F.G., Liriano, M.L., Rahman, T.S., Sykes, E.C.H.: J. Phys Chem. C 116, 25868–25873 (2012)CrossRefGoogle Scholar
  14. 14.
    Pozzo, M., Alfe, D.: Int. J. Hydrogen Energy 34, 1922–1930 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Schlapbach, L.: J. Phys. F: Metal Phys. 10, 2477–2490 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    Shannon, R.D.: Acta Crystallogr. A 32, 751–767 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    McCusker, L.B., Von Dreele, R.B., Cox, D.E., Loueer, D., Scardi, P.: J. Appl. Cryst. 32, 36–50 (1999)CrossRefGoogle Scholar
  18. 18.
    Kittel, C.: Introduction to solid state physics, P.425, 7th edn. Wiley, NY (1996)Google Scholar
  19. 19.
    Coduri, M., Scavini, M., Brunelli, M., Pedrazzin, E., Masala, P. : Solid State Ionics 268, 150–155 (2014)CrossRefGoogle Scholar
  20. 20.
    Gruen, D.M., Koehler, W.C., Katz, J.J.: J. Am. Chem. Soc. 73, 1475–1479 (1951)CrossRefGoogle Scholar
  21. 21.
    Morales, A.E., Mora, E.S., Pal, U.: Revista Mexicana de Fisica S 53, 18–22 (2007)Google Scholar
  22. 22.
    Horoz, S., Simsek, S., Palaz, S., Mamedov, A.M. World J. Conden. Matter Phys. 5, 78–85 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Li, Y.Q., Hirosaki, N., Xie, R.J., Takeda, T., Lofland, S.E., Ramanujachary, K.V.: J. Alloys Compds 484, 943–948 (2009)CrossRefGoogle Scholar
  24. 24.
    Parks, G.A., Akhtar, S.: The Am. Mineralogist 53, 406–415 (1968)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceUniversity of BahrainSakhirKingdom of Bahrain

Personalised recommendations