Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 4, pp 1123–1127 | Cite as

Structural Dependence of Conductivity in Rare Earth Doped Strontium Cobaltite Nanoparticles

Original Paper
  • 120 Downloads

Abstract

Rare earth doped strontium cobaltite (Sr1 − x R x CoO3 − δ where R is rare earth element like cerium (Ce) (x = 0.0, 0.025)) was synthesized by a composite-mediated hydrothermal method (CMHM). X-ray diffraction (XRD) was done to study the structural properties such as crystal structure, crystallite size, lattice constants and phase purity of the samples. Phase transformation from monoclinic to the hexagonal structure was observed with heat treatment. DC electrical conductivity was studied as a function of temperature in the range from room temperature to 430°C. It was observed that DC electrical conductivity increased with increase in temperature and was explained by a hopping model. Impedance was measured as a function of temperature (30–600°C) at the frequency of 1 MHz. Different parameters were correlated to study the conductivity mechanism. The prepared samples are one of the suitable candidates for the cathode of intermediate temperature solid oxide fuel cells (ITSOFCs).

Keywords

Rare earth Perovskite ITSOFCs Composite-mediated hydrothermal method Hopping 

References

  1. 1.
    Zeng, P., Ran, R., Chen, Z., Zhou, W., Gu, H., Shao, Z., Liu, S.: Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol–gel synthesis. J. Alloys Compd. 455(1), 465–470 (2008)CrossRefGoogle Scholar
  2. 2.
    Vashook, V.V., Zinkevich, M.V., Ullmann, H., Paulsen, J., Trofimenko, N., Teske, K.: Oxygen non-stoichiometry and electrical conductivity of the binary strontium cobalt oxide SrCoOx. Solid State Ionics 99(1), 23–32 (1997)CrossRefGoogle Scholar
  3. 3.
    Yahiro, H., Eguchi, K., Arai, H.: Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics 36(1), 71–75 (1989)CrossRefGoogle Scholar
  4. 4.
    Lee, T.S., Chung, J., Chen, Y.-C.: Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling. Energy Convers. Manag. 52, 3214–3226 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhou, Q., He, T., Ji, Y.: SmBaCo2 O 5 + x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. J. Power Sources 185(2), 754–758 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Guinier, A.: X-ray diffraction in crystals, imperfect crystals, and amorphous bodies Courier Corporation (1994)Google Scholar
  7. 7.
    Agilandeswari, K., Kumar, A.R.: Synthesis, characterization, microstructure, optical and magnetic properties of strontium cobalt carbonate precursor and Sr2Co2 O 5 oxide material. Superlattice Microst. 68, 27–37 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Deng, Z.Q., Yang, W.S., Liu, W., Chen, C.S.: Relationship between transport properties and phase transformations in mixed-conducting oxides. J. Solid State Chem. 179(2), 362–369 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Yang, W., Hong, T., Li, S., Ma, Z., Sun, C., Xia, C., Chen, L.: Perovskite Sr1−xCexCoO3−δ(0.05 ≤ x≤0.15) as superior cathodes for intermediate temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces 5(3), 1143–114 (2013)CrossRefGoogle Scholar
  10. 10.
    Zeng, P., Ran, R., Chen, Z., Zhou, W., Gu, H., Shao, Z., Liu, S.: Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol–gel synthesis. J. Alloys Compd. 455(1), 465–470 (2008)CrossRefGoogle Scholar
  11. 11.
    Wei, Q.T., Guo, R.S., Wang, F.H., Li, H.L.: Structure and electrical properties of SrCoO3−δ doped by CeO2. J. Mater. Sci. 40(5), 1317–1319 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Trofimenko, N.E., Paulsen, J., Ullmann, H., Müller, R.: Structure, oxygen stoichiometry and electrical conductivity in the system Sr-Ce-Co-O. Solid State Ionics 100(3), 183–191 (1997)CrossRefGoogle Scholar
  13. 13.
    Huang, S., Feng, S., Lu, Q., Li, Y., Wang, H., Wang, C.: Cerium and niobium doped SrCoO3−δ as a potential cathode for intermediate temperature solid oxide fuel cells. J. Power Sources 251, 357–362 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Hansen, K.K.: A-site deficient (Pr0.6Sr0.4)1−sFe0.8Co0.2 O 3−δ: perovskites as solid oxide fuel cell cathodes. J. Electrochem. Soc. 156(10), B1257–B1260 (2009)CrossRefGoogle Scholar
  15. 15.
    Otto, H.W., Seward, R.P.: Phase equilibria in the potassium hydroxide-sodium hydroxide system. J. Chem. Eng. Data 9(4), 507–508 (1964)CrossRefGoogle Scholar
  16. 16.
    Jin, H., Wang, N., Xu, L., Hou, S.: Synthesis and conductivity of cerium oxide nanoparticles. Mater. Lett. 64(11), 1254–1256 (2010)CrossRefGoogle Scholar
  17. 17.
    Abdullah, A., Saleemi, A.S., Anis-ur-Rehman, M.: Temperature and frequency dependence of transport phenomena in co-doped rare earth oxides nanoparticles for ITSOFCs. J. Alloys Compd. 632, 695–700 (2015)CrossRefGoogle Scholar
  18. 18.
    Bhattacharjee, K., Ghosh, C.K., Mitra, M.K., Das, G.C., Mukherjee, S., Chattopadhyay, K.K.: Novel synthesis of NixZn1−xFe2 O 4 (0 ≤ x≤1) nanoparticles and their dielectric properties. J. Nanopart. Res. 13(2), 739–750 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Hansen, K., Hansen, K.: Kent A-site deficient (La0.6Sr0.4)1−sFe0.8Co0.2 O 3−δ perovskites as SOFC cathodes. Solid State Ion 178(23), 1379–1384 (2007)CrossRefGoogle Scholar
  20. 20.
    Yang, W.: Perovskite Sr1−xCexCoO3−δ (0.05 ≤ x≤0.15) as superior cathodes for intermediate temperature solid oxide fuel cells. ACS Appl. Mater. Interface 5(3), 1143–1148 (2013)CrossRefGoogle Scholar
  21. 21.
    Li, F., Li, J.: Effect of Ni substitution on electrical and thermoelectric properties of LaCoO3 ceramics. Ceram. Inter. 37(1), 105–110 (2011)CrossRefGoogle Scholar
  22. 22.
    Deng, Z.Q., Yang, W.S., Liu, W., Chen, C.S.: Relationship between transport properties and phase transformations in mixed-conducting oxides. J. Solid State Chem. 179(2), 362–369 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Funke, K.: Jump relaxation model and coupling model-a comparison. J. Non-Cryst. Solids 172, 1215–1221 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Ullmann, H., Trofimenko, N., Naoumidis, A., Stöver, D.: Ionic/electronic mixed conduction relations in perovskite-type oxides by defect structure. J. Europ. Ceram. Soc. 19, 791–796 (1999)CrossRefGoogle Scholar
  25. 25.
    Jaiswal, S.K., Kumar, J.: On the sol–gel synthesis and structure, optical, magnetic and impedance behaviour of strontium cobaltite powder. J. Alloys Comp. 509, 3859–3865 (2011)CrossRefGoogle Scholar
  26. 26.
    Das, P.R., Pati, B., Sutar, B., Choudhury, R.: Study of structural and electrical properties of a new type of complex tungsten bronze electroceramics; Li2Pb2 Y 2 W 2Ti4 V 4 O 30. J. Mod. Phys. 3, 870 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • O. Farooq
    • 1
  • F. Ghafoor
    • 1
  • A. Haq
    • 1
  • M. Anis-ur-Rehman
    • 1
  1. 1.Applied Thermal Physics Laboratory, Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations