The Effect of Dilute Charged Impurity on the Electronic Heat Capacity and Magnetic Susceptibility of Ferromagnetic MoS2

  • Mohsen Yarmohammadi
Original Paper


In this paper, the effects of dilute charged impurity doping on electronic heat capacity (EHC) and magnetic susceptibility (MS) of a two-dimensional material ferromagnetic gapped graphene-like, MoS2, are investigated within the Green’s function approach by using the Kane-Mele Hamiltonian and self-consistent Born approximation (SCBA) at Dirac points. Our findings show that there is a critical impurity concentration (IC) and scattering strength (ISS) for each valley in EHC and MS curves. Also, we have found that the spin band gap decreases with impurity only for valley K, and \(K^{\prime }, \downarrow \) due to the existence of inversion symmetry between valleys. On the other hand, a magnetic phase transition from ferromagnetic to antiferromagnetic and paramagnetic has been observed. The increase of scattering rate of carriers in the presence of impurity is the main reason of these behaviors.


Ferromagnetic MoS2 Green’s function Electronic heat capacity Magnetic susceptibility Phase transition 


  1. 1.
    Yoffe, A.D.: Chem. Soc. Rev. 5, 51 (1976)CrossRefGoogle Scholar
  2. 2.
    Byskov, L.S., Nrskov, J.K., Clauden, B.S., Topse, H.: J. Catalana 187, 109 (2000)CrossRefGoogle Scholar
  3. 3.
    Raybaud, P., Hafner, J., Kresse, G., Kasztelan, S., Toulhoat, H.: J. Catalana 189, 129 (2000)CrossRefGoogle Scholar
  4. 4.
    Sun, M., Nelson, A.E., Adjaye, J.: J. Catalana 233, 411 (2005)CrossRefGoogle Scholar
  5. 5.
    Galea, N.M., Kadantsev, E.S., Ziegler, T.: J. Phys. Chem. C 113, 193 (2009)CrossRefGoogle Scholar
  6. 6.
    Vojvodic, A., Hinnemann, B., Norskov, J.K.: Phys. Rev. B 80, 125416 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Li, T., Galli, G.: J. Phys. Chem. C 111, 16192 (2007)CrossRefGoogle Scholar
  8. 8.
    Gourmelon, E., Lignier, O., Hadouda, H., Couturier, G., Bernede, J.C., Tedd, J., Pouzed, J., Salardenne, J.: Sol. Energy Mater. Sol. Cells 46, 115 (1997)CrossRefGoogle Scholar
  9. 9.
    Thomalla, M., Tributsch, H.: J. Phys. Chem. B 110, 12167 (2006)CrossRefGoogle Scholar
  10. 10.
    Mak, K.F., McGill, K.L., Park, J., McEuen, P.L.: Science 344, 1489 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Yin, X., Ye, Z., Chenet, D.A., Ye, Y., O’Brien, K., Hone, J.C., Zhang, X.: Science 344, 488 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Stajic, J.: Science 344, 1476 (2014)ADSGoogle Scholar
  13. 13.
    Lee, C.-H., Lee, G.-H., Zande, A.M., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., Kim, P.: Nature Nanotech. 150, 676 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Wu, S., Ross, J.S., Liu, G.-B., Aivazian, G., Jones, A., Fei, Z., Zhu, W., Xiao, D., Yao, W., Cobden, D., Xu, X.: Nature Phys. 9, 149 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Kadantsev, E.S., Hawrylak, P.: Solid State Commun. 152, 909 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Baugher, B.W.H., Churchill, H.O.H., Yang, Y., Jarillo-Herrero, P.: Nano Lett. 13, 4212 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Nature Nanotech. 6, 147 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Sarkar, D., Liu, W., Xie, X., Anselmo, A.C., Mitragotri, S., Banerjee, K.: ACS Nano 8, 3992 (2014)CrossRefGoogle Scholar
  20. 20.
    Perkins, F.K., Friedman, A.L., Cobas, E., Campbell, P.M., Jernigan, G.G., Jonker, B.T.: Nano Lett. 13, 668 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Sundaram, R.S., Engel, M., Lombardo, A., Krupke, R., Ferrari, A.C., Avouris, P., Steiner, M.: Nano Lett. 13, 1416 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A.: Nature Nanotech. 8, 497 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Yuan, H., Bahramy, M.S., Morimoto, K., Wu, S., Nomura, K., Yang, B. -J., Shimotani, H., Suzuki, R., Toh, M., Kloc, C., Xu, X., Arita1, R., Nagaosa1, N., Iwasa, Y.: Nature Phys. 9, 563 (2013)Google Scholar
  24. 24.
    Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X.: Nature Nanotech. 7, 490 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Mak, K.F., He, K., Shan, J., Heinz, T.F.: Nature Nanotech. 7, 494 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Zhu, Z.Y., Cheng, Y.C., Schwingenschlȯgl, U.: Phys. Rev. B 84, 153402 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B., Feng, J.: Nat. Commun. 3, 887 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W.: Phys. Rev. Lett. 108, 196802 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    El-Mahalawy, S.H., Evans, B.L.: Phys. Status Solidi B 79, 713 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    El Beqqali, O., Zorkani, I., Rogemond, F., Chermette, H., Chaabane, R.B., Gamoudi, M., Guillaud, G.: Synth. Met. 90, 165 (1997)CrossRefGoogle Scholar
  31. 31.
    Ataca, C., Sahin, H., Akturk, E., Ciraci, S.: J. Phys. Chem. C 115, 3934 (2011)CrossRefGoogle Scholar
  32. 32.
    Wilcoxon, J.P., Newcomer, P.P., Samara, G.A.: J. Appl. Phys. 81, 7934 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., Chhowalla, M.: Nano. Lett. 11, 5111 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. -Y., Galli, G., Wang, F.: Nano. Lett. 10, 1271 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J., Sch uller, C.: Appl. Phys Lett. 99, 102109 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Botello-Mndez, M., Terrones, A.R., Lopez-Uras, F., Terrones, H.: Nanotechnology 20, 325703 (2009)CrossRefGoogle Scholar
  37. 37.
    Shidpour, R.: Nanoscale 2, 1429 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Li, Y., Zhou, Z., Zhang, S., Chen, Z.: J. Am. Chem. Soc. 130, 16739 (2008)CrossRefGoogle Scholar
  39. 39.
    Kittle, C.: Introduction to Solid State Physics, eighth. Wiley, New York (2004)Google Scholar
  40. 40.
    Yarmohammadi, M.: J. Magn. Magn. Mater. 417, 208 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    yarmohammadi, M.: J. Electron. Mater. 45, 4958 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Rostami, H., Moghaddam, A.G., Asgari, R.: Phys. Rev. B 88, 085440 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Fan, X.-L., An, Y.-R., Guo. W.-J.: Nanoscale Res. Lett. 11, 154 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Zhang, R., Li, Y., Gi, J., Gao, D.: Nanoscale Res. Lett. 9, 586 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Mahan, G.D.: Many Particle Physics. Plenum Press, New York (1993)Google Scholar
  46. 46.
    Nolthing, W., Ramakanth, A.: Quantum Theory of Magnetism. Springer, New York (2009)CrossRefMATHGoogle Scholar
  47. 47.
    Yarmohammadi, M.: AIP Advances. 6, 085008 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    Pathria, R.K.: Statistical Mechanics. Oxford Press, London (1997)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Kermanshah BranchIslamic Azad UniversityKermanshahIran

Personalised recommendations