Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 4, pp 1003–1018 | Cite as

Magnetism in Yttrium Intermetallics: Ab Initio Study

  • Ramesh Sharma
  • Yamini Sharma
Original Paper


This work is stimulated by the recent developments in the search of novel magnetic materials such as the simple cubic laves phase compounds of yttrium and 3d transition metals with ferromagnetic or exchange enhanced Pauli paramagnetic properties. The ground state electronic structure of the intermetallics was calculated by the full potential linearized augmented plane wave method (FP-LAPW) based on the density functional theory. The suitability of the various approximations LDA and GGA with exchange-correlations (XCs) potentials such as GGA-PBEsol, GGA-WC, etc. on the electronic structure was also investigated. From the calculated band structure and angular-momentum projected density of states (DOS), strong dd hybridization of electrons at the Fermi level was observed. The Fe-Y and Co-Y coupling is stronger for minority component of Fe/Co d states which leads to formation of negative magnetic moment on Y sites. The magnetic moments were found to be considerably larger than the experimental moments although there is good agreement with methods based on DFT. The Y-TM compounds have mixed chemical bonding character which we have characterized by calculating the Bader charge distributions, electron localization function, as well as the magnetization spin density. High magnetization density is localized on the Fe atoms which imparts ferromagnetism to the more ionic YFe2 system, whereas the shift of electron density and magnetization density towards inter atomic regions imparts exchange enhanced paramagnetic properties in more covalent YCo2 system. In order to study the influence of d-electrons, the temperature-dependent electrical resistivity and thermopower were obtained from the band energies. Magnetism was investigated in terms of enhanced magnetic susceptibility and Sommerfeld term γ obtained from low temperature-specific heats. The dynamical stability of YX2 was investigated by calculating the vibrational phonon modes and phonon density of states. The lowermost frequency modes arise from vibrations of Y–Fe bonds which exhibit structural instability which have been interpreted in terms of electron-phonon coupling. The coupling of magnetic moments with the lattice in YFe2 verifies the magneto-elastic interactions found experimentally.


Intermetallics Electronic structure Magnetic properties Transport properties Dynamical properties 



We are thankful for financial assistance (Grant no. 2011/371/29/BRNS/1782) provided by BRNS, Mumbai. We are also thankful to Prof. Blaha for Wien2K code and Prof. Kress for VASP code.


  1. 1.
    Lange, R.J., Fisher, I.R., Canfield, P.C., Antropov, V.P., Lee, S.J., Harmon, B.N., Lynch, D.W.: Observation of a metamagnetic phase transition in an itinerant 4f system via the magneto-optic Kerr effect Ce(Fe1−xCox)2. Phys. Rev. B 62, 7084–7092 (2000). doi: 10.1103/PhysRevB.62.7084 ADSCrossRefGoogle Scholar
  2. 2.
    Ritter, C.: Polarized neutron study of the magnetic ordering in the simple alloy YFe2. J. Phys.: Condens. Matter. 1, 2765 (1989). doi: 10.1088/0953-8984/1/16/0172 ADSGoogle Scholar
  3. 3.
    Paolasini, L., Hennion, B., Panchula, A., Myers, K., Canfield, P.: Lattice dynamics of cubic Laves phase ferromagnets. Phys. Rev. B 58, 12125–12133 (1998). doi: 10.1103/PhysRevB.58.12125 ADSCrossRefGoogle Scholar
  4. 4.
    Paolasinia, L., Landerb, G.H.: Iron magnetism in cubic Laves phase itinerant ferromagnets. J. Alloys Compnd. 303–304, 232–238 (2000)CrossRefGoogle Scholar
  5. 5.
    Gratz, E., Bauer, E., Pöllinger, S., Nowotny, H., Burkov, A.T., Vedernikov, M.V.: Thermopower of some rare-earths compounds from 2K-1000 K. J. Phys. Colloques 49, C8-511-C2-512 (1988). doi: 10.1051/jphyscol:19888231 CrossRefGoogle Scholar
  6. 6.
    Rastogi, A., Hilscher, G., Gratz, E., Pillmayr, N.: Magnetic and transport properties of Ce (Fe1−xCox)2. J. Phys. Colloques 49, C8-277-C8-278 (1988). doi: 10.1051/jphyscol/19888123 CrossRefGoogle Scholar
  7. 7.
    Gratz, E., Kottar, A., Lindbaum, A., Mantler, M., Latroche, M., Paul-Boncour, V., Acet, M., Barner, C.L., Holzapfe, W.B., Pacheco, V., Yvon, K.: Temperature- and pressure-induced structural transitions in rare-earth-deficient R1−xNi2(R = Y, Sm, Gd, Tb) Laves phases. J. Phys.: Condens. Matter. 8, 8351–8361 (1996)ADSGoogle Scholar
  8. 8.
    Hauser, R., Bauer, E., Gratz, E.: Pressure-dependent electrical resistivity of RCo2 compounds (R = rare-earth). Phys. Rev. B 57, 2904–2914 (1998). doi: 10.1103/PhysRevB.57.2904 ADSCrossRefGoogle Scholar
  9. 9.
    Dedkov, Y.S., Laubschat, C., Khmelevskyi, S., Redinger, J., Mohn, P., Wienert, M.: Observation of ferromagnetic surface of paramagnetic YCo2. J. Phys. Conf. Ser. 100, 072028 (2008). doi: 10.1088/1742-6596/100/7/1072028 CrossRefGoogle Scholar
  10. 10.
    Cyrot, M., Lavagna, M.: Density of states and magnetic properties of rare earth compounds. J. Phys. 40, 763–771 (1979). doi: 10.1051/jphys:01979004008076300 CrossRefGoogle Scholar
  11. 11.
    Yamada, H., Inoue, J., Terao, K., Kanda, S., Shimizu, M.: Electronic structure and magnetic properties of YM2 compounds (M = Mn, Fe, Co and Ni). J. Phys. F: Met. Phys. 14, 1943–1960 (1984). doi: 10.1088/0305-4608/14/8/023 ADSCrossRefGoogle Scholar
  12. 12.
    Mohammad, F.Z., Yehia, S., Aly, S.H.: A DFT-based study of the magnetic, electronic and elastic properties of YFe2. Int. J. Phys. Appl. 2, 135–148 (2010)Google Scholar
  13. 13.
    Yanez-Terrazas, E., Gallegos-Orozco, V., Matutes-Aquino, J.A., Ochoa-Lara, M.T., Espinosa-Magana, F.: Electronic structure of YFe2 by EELS and ab initio calculations. Ad. Mat. Res 68, 89–95 (2009). doi: 10.4028/ CrossRefGoogle Scholar
  14. 14.
    Coehoorn, R.: Calculated electronic structure and magnetic properties of Y-Fe compounds. Phys. Rev. B 39, 13072 (1989). doi: 10.1103/PhysRevB.39.13072 ADSCrossRefGoogle Scholar
  15. 15.
    Eriksson, O., Johansson, B., Brooks, M.S.S., Skriver, H.L.: Electronic structure and magnetic properties of selected lanthanide and actinide intermetallic Laves phase alloys. Phys. Rev. B 40, 9519–9527 (1989). doi: 10.1103/PhysRevB.40.9519 ADSCrossRefGoogle Scholar
  16. 16.
    Becker C., Hafner J.: Structural, electronic, and magnetic properties of Fe-Y alloys. Phys. Rev. B 50, 3913–3929 (1994). doi: 10.1103/PhysRevB.50.3913 ADSCrossRefGoogle Scholar
  17. 17.
    Inoue, J., Shimizu, M.: Electronic structure and magnetic properties of amorphous YCo2. J. Phys. F: Met. Phys. 15, 1525–1536 (1985). doi: 10.1088/0305-4608/15/7/011 ADSCrossRefGoogle Scholar
  18. 18.
    Chioncel, L., Burzo, E., Tetean, R., Pop, V.: Electronic structure of Y(CoxNi1−x)2 compounds. Mol. Cryst. Liq. Cryst. 417, 29–37 (2004). doi: 10.1080/15421400490478641 CrossRefGoogle Scholar
  19. 19.
    Nakada, K., Shimizu, H., Yamada, H.: Fermi surfaces of YFe2and YNi2. Phys. B: Condens. Matter. 329–333, 129–1130 (2003). doi: 10.1016/S0921-4526(02)02470-5 Google Scholar
  20. 20.
    Moulay, N., Rached, H., Rabah, M., Benalia, S., Rache, D., Reshak, A.H., Benkhettou, N., Ruterana, P.: First-principles calculations of the elastic, and electronic properties of YFe2, NiFe2 and YNiFe4 intermetallic compounds. Compt. Mat. Sci. 73, 56–64 (2013). doi: 10.1016/j.commatsci.2013.02.010 CrossRefGoogle Scholar
  21. 21.
    Gaidukova, I.Y., Markosyan, A.S.: d-magnetism instability in R-Co intermetallic compounds. J. Sci.: Adv. Mat. Devices 1, 105–112 (2016). doi: 10.1016/j.jsamd.2016.06.008 Google Scholar
  22. 22.
    Blaha P., Schwarz K., Madsen G.K.H., Kuasnicka D., Luitz J.: WIEN2k, an augmented plane wave+ local orbitals program for calculating crystal properties, K. Schwartz Technical Universitat, Wien, Australia, ISBN 3-9501031-1 (2001)Google Scholar
  23. 23.
    Kresse, G., Hafner, J.: ab initio molecular dynamics for liquid metals. Phys.Rev.B 47, 558 (1993). doi: 10.1103/PhysRevB.47.558
  24. 24.
    Kresse, G., Hafner, J.: ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994). doi: 10.1103/PhysRevB941.49.14251
  25. 25.
    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15 (1996). doi: 10.1016/0927-0256(96)00008-0
  26. 26.
    Kresse, G., Furthmüller,J.: Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). doi: 10.1103/PhysRevB.54.11169
  27. 27.
    Parlinski, K., Li, Z.Q., Kawazoe, Y.: First principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063–4072 (1997). doi: 10.1103/PhysRevLett.78.4063 ADSCrossRefGoogle Scholar
  28. 28.
    Madsen, G.K.H., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comp. Phys. Comm. 175, 67–71 (2006). doi: 10.1016/j.cpc.2006.03.007 ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsMewar UniversityChittorgarhIndia
  2. 2.Theoretical Condensed Matter Physics Laboratory, Department of PhysicsFeroze Gandhi CollegeRaebareliIndia

Personalised recommendations