Advertisement

Particularities of the Magnetic State of CuO Nanoparticles Produced by Low-Pressure Plasma Arc Discharge

  • A. A. Lepeshev
  • I. V. Karpov
  • A. V. Ushakov
  • D. A. Balaev
  • A. A. Krasikov
  • A. A. Dubrovskiy
  • D. A. Velikanov
  • M. I. Petrov
Original Paper

Abstract

Copper oxide nanoparticles were produced by direct plasmachemical synthesis in a plasma arc discharge of low pressure. The formation of CuO nanoparticles with an average size of 12 nm and narrow size distribution intervals was determined by using the x-ray diffraction analysis and TEM microscopy methods. It was defined by using a vibration magnetometer and a SQUID magnetometer, that the magnetic properties of CuO nanoparticles with such size were extremely different from the magnetic properties of bulk antiferromagnetic CuO. Structural defects caused the formation of a ferromagnetic state, remaining at least up to the room temperature. The temperature of corresponding antiferromagnetic ordering was significantly decreased (down to ∼ 100 K). Meanwhile, some of the copper surface spins showed a spin-glass behavior at low temperatures.

Keywords

CuO nanoparticles Plasmachemical synthesis Magnetic properties Vibration magnetometer 

Notes

Acknowledgments

The work was performed with a support of the grant of the Russian Science Foundation (project no. 16-19-10054)

References

  1. 1.
    Batlle, X., Labarta, A.: J. Phys. D 35, R15 (2002). stacks.iop.org/JPhysD/35/R15 ADSCrossRefGoogle Scholar
  2. 2.
    Mørup, S., Madsen, D.E., Fradsen, C., Bahl, C.R.H., Hansen, M.F.: J. Phys.: Condens. Matter. 19, 213202 (2007). doi: 10.1088/0953-8984/19/21/213202 ADSGoogle Scholar
  3. 3.
    Néel, L.: CR Acad Sciences. Paris 252, 4075 (1961)Google Scholar
  4. 4.
    Raikher, Y.U.L., Stepanov, V.I.: J. Exp. Theor. Phys. 107, 435 (2008). doi: 10.1134/S1063776108090112 ADSCrossRefGoogle Scholar
  5. 5.
    Dobretsov, K., Stolyar, S., Lopatin, A.: Acta Otorhinolaryngol Ital 35, 97 (2015)Google Scholar
  6. 6.
    Punnoose, A., Magnone, H., Seehra, M.S., Bonevich, J.: Phys. Rev. B 64, 174420 (2001). doi: 10.1103/PhysRevB.64.174420 ADSCrossRefGoogle Scholar
  7. 7.
    Zheng, X.G., Xu, C.N., Nishikubo, K., Nishiyama, K., Higemoto, W., Moon, W.J., Tanaka, E., Otabe, E.S.: Phys. Rev. B 72, 014464 (2005). doi: 10.1103/PhysRevB.72.014464 ADSCrossRefGoogle Scholar
  8. 8.
    Bianchi, A.E., Stewart, S.J., Zysler, R.D., Punte, G.: J. Appl. Phys. 112, 083904 (2012). doi: 10.1063/1.4758307 ADSCrossRefGoogle Scholar
  9. 9.
    Golosovsky, I.V., Mirebeau, I., Andre, G., Kurdyukov, D.A., Kumzerov, Y.u.A., Vakhrushev, S.B.: Phys. Rev. Lett. 86, 5783 (2001). doi: 10.1134/S1063783406110151 ADSCrossRefGoogle Scholar
  10. 10.
    Kumzerov, Y.u.A., Kartenko, N.F., Parfen’eva, L.S., Smirnov, I.A., Sysoeva, A.A., Misiorek, H., Jezowski, A.: Phys. Solid State 54, 1066 (2012). doi: 10.1134/S1063783412050228 ADSCrossRefGoogle Scholar
  11. 11.
    Thota, S., Shim, J.H., Seehra, M.S.: J. Appl. Phys. 114, 214307 (2013). doi: 10.1063/1.4838915 ADSCrossRefGoogle Scholar
  12. 12.
    Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Popkov, S.I., Stolyar, S.V., Bayukov, O.A., Iskhakov, R.S., Ladygina, V.P., Yaroslavtsev, R.N.: JMMM 410, 171 (2016). doi: 10.1016/j.jmmm.2016.02.059 ADSCrossRefGoogle Scholar
  13. 13.
    Arbuzova, T.I., Naumov, S.V., Samokhvalov, A.A., Gizhevskii, B.A., Arbuzov, V.L., Shal’nov, K.V.: Phys. Solid State 43, 878 (2001). doi: 10.1134/1.1371369 ADSCrossRefGoogle Scholar
  14. 14.
    Arbuzova, T.I., Naumov, S.V., Arbuzov, V.L., Shal’nov, K.V., Ermakov, A.E., Mysik, A.A.: Phys. Solid State 45, 304 (2003). doi: 10.1134/1.1553536 ADSCrossRefGoogle Scholar
  15. 15.
    Petrov, M.I., Balaev, D.A., Shaikhutdinov, K.A., Ovchinnikov, S.G.: Phys. Solid State 40, 1451 (1998). doi: 10.1134/1.1130601 ADSCrossRefGoogle Scholar
  16. 16.
    Forsyth, J.B., Brown, P.J., Wanklyn, B.M.: J. Phys. C 21, 2917 (1988). doi: 10.1088/0022-3719/21/15/023 ADSCrossRefGoogle Scholar
  17. 17.
    Kondo, O., Ono, M., Sugiura, E., Sugiyama, K., Date, M.: J. Phys. Soc. Jpn. 57, 3293 (1988). doi: 10.1143/JPSJ.57.3293 ADSCrossRefGoogle Scholar
  18. 18.
    Seehra, M.S., Dutta, P., Shim, H., Manivannan, A.: Solid State Commun. 129, 721 (2004). doi: 10.1016/j.ssc.2003.12.019 ADSCrossRefGoogle Scholar
  19. 19.
    Zysler, R.D., Vasquez Mansilla, M., Fiorani, D.: Eur. Phys. J. B 41, 171 (2004). doi: 10.1140/epjb/e2004-00306-7 ADSCrossRefGoogle Scholar
  20. 20.
    Liu, L., Hong, K., Hu, T., Xu, M.: J. Alloys Compd. 511, 195 (2012). doi: 10.1016/j.jallcom.2011.09.028 CrossRefGoogle Scholar
  21. 21.
    Srivastava, S., Kumar, M., Agrawal, A., Kumar Dwivedi, S.: J. Appl. Phys. (IOSR-JAP) 5, 61 (2013)CrossRefGoogle Scholar
  22. 22.
    Asharf Shah, M., Al-Ghamdi, M.S.: Mater. Sci. Appl. 2, 977 (2011). doi: 10.4236/msa.2011.28131 Google Scholar
  23. 23.
    Swarnkar, R.K., Singh, S.C., Gopal, R.: Bull. Mater. Sci. 34, 1363 (2011). doi: 10.1007/s12034-011-0329-4 CrossRefGoogle Scholar
  24. 24.
    Musil, J., Baroch, P.: Vacuum 87, 96 (2013). doi: 10.1016/j.vacuum.2012.02.023 ADSCrossRefGoogle Scholar
  25. 25.
    Nadeem, K., Krenn, H., Traußnig, T., Würschum, R., Szabó, D.V., Letofsky-Papst, I.: J. Appl. Phys. 111, 113911 (2012). doi: 10.1063/1.4724348 ADSCrossRefGoogle Scholar
  26. 26.
    Synek, P., Jašek, O., Zajíčková, L.: Plasma Chem. Plasma Process. 34, 327 (2014). doi: 10.1007/s11090-014-9520-x CrossRefGoogle Scholar
  27. 27.
    Lei, P., Boies, A., Calder, S., Girshick, S.: Plasma Chem. Plasma Process. 32, 519 (2012). doi: 10.1007/s11090-012-9364-1 CrossRefGoogle Scholar
  28. 28.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Fedorov, L.Y.u., Shaikhadinov, A.A.: Tech. Phys. 86, 103 (2016). doi: 10.1134/S1063784216010230 CrossRefGoogle Scholar
  29. 29.
    Lepeshev, A.A., Karpov, I.V., Ushakov, A.V., Fedorov, L.Yu., Shaikhadinov, A.A.: Int. J. Nanosci. 15, 1550027 (2016). doi: 10.1142/S0219581X15500271 CrossRefGoogle Scholar
  30. 30.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Zharkov, S.M.: Vacuum 128, 123 (2016). doi: 10.1016/j.vacuum.2016.03.025 ADSCrossRefGoogle Scholar
  31. 31.
    Fedorov, L.Y.u., Karpov, I.V., Ushakov, A.V., Lepeshev, A.A.: Inorg. Mater. 51, 25 (2015). doi: 10.1134/S0020168515010057 CrossRefGoogle Scholar
  32. 32.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A.: Tech. Phys. 86, 260 (2016). doi: 10.1134/S1063784216020262 CrossRefGoogle Scholar
  33. 33.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A.: Phys. Solid State 57, 2320 (2015). doi: 10.1134/S1063783415110359 ADSCrossRefGoogle Scholar
  34. 34.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I.: J. Appl. Phys. 118, 023907 (2015). doi: 10.1063/1.4926549 ADSCrossRefGoogle Scholar
  35. 35.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petrov, M.I., Fedorov, L.Y.u.: Phys. Solid State 57, 919 (2015). doi: 10.1134/S1063783415050303 ADSCrossRefGoogle Scholar
  36. 36.
    Ushakov, A.V., Karpov, I.V., Lepeshev, A.A., Petorv, M.I., Fedorov, L.Y.U.: JETP Lett. 99, 99 (2014). doi: 10.1134/S002136401402009X ADSCrossRefGoogle Scholar
  37. 37.
    Karpov, I. V., Ushakov, A. V., Fedorov, L. Y. u., Lepeshev, A. A.: Tech. Phys. 84, 559 (2014). doi: 10.1134/S1063784214040148 CrossRefGoogle Scholar
  38. 38.
    Rietveld, H.M.: J. Appl. Crystallogr. 2, 65 (1969). doi: 10.1107/S0021889869006 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Krasnoyarsk Scientific Center of the Siberian BranchRussian Academy of ScienceKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.L.V. Kirensky Institute of PhysicsKrasnoyarskRussia

Personalised recommendations