Study on the Magnetic and Ferroelectric Properties of Ca-Doped and (Eu, Ca)Co-doped BiFeO3

  • Renzhou Wang
  • Huazhong Shu
  • Weiwei Mao
  • Xingfu Wang
  • Hongtao Xue
  • Liang Chu
  • Jianping Yang
  • Xing’ao Li
Original Paper


The present work addresses the influence of Ca doping and (Eu, Ca) co-doping into BiFeO3 on its corresponding structural, magnetic, and ferroelectric properties. XRD results show that Bi site doped with Ca and Eu could result in a transition of crystal structure. Analysis of magnetic hysteresis data reveals a further enhancement of magnetism in the (Eu, Ca)co-doped samples which is explained by the structural distortions and the magnetically active characteristic of Eu3+ ions. High remnant polarization at room temperature was observed in the Bi1−0.05−y Eu0.05Ca y FeO3 samples by measuring the electric hysteresis loops due to Eu doping suppressing the formation of Fe2+ and oxygen vacancies.


BiFeO3 Sol–gel method Multiferroics 



We acknowledge the financial support from the Ministry of Education of China (No. IRT1148), the National Natural Science Foundation of China (Nos. 51372119, 61377019, 61136003, and 51173081), the College Postgraduate Research and Innovation Project of Jiangsu Province (Nos. KYLX_0794 and KYLX15_0848), the Natural Science Foundation of Jiangsu (No. KZ0070715050), the Seed Project Funded by Introducing Talent of NJUPT (No. XK0070915022), and the Natural Science Foundation of NJUPT (Nos. NY214129, NY214130, NY214181, and NY215176).


  1. 1.
    Fiebig, M.: J. Phys. D: Appl. Phys. 38, R123 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Wang, K.F., Liu, J.M., Ren, Z.F.: Adv. Phys. 58, 321–448 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., Srinivasan, G.: J. Appl. Phys. 103, 031101 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Ramesh, R., Spaldin, N.A.: Nature Mater. 6, 21–29 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Li, Y., Cao, M.S., Wang, D.W., Yuan, J.: RSC Adv. 5, 77184–77191 (2015)CrossRefGoogle Scholar
  6. 6.
    Sun, B., Liu, Y., Zhao, W., Chen, P.: RSC Adv. 5, 13513–13518 (2015)CrossRefGoogle Scholar
  7. 7.
    Das, S., Rana, S., Mursalin,, Rana, P., Sen, A.: Sensor Actuat B-Chem. 218, 122–127 (2015)CrossRefGoogle Scholar
  8. 8.
    Rogov, A., Irondelle, M., Ramos-Gomez, F., Bode, J., Staedler, D., Passemard, S., Courvoisier, S., Yamamoto, Y., Waharte, F., Ciepielewski, D., Rideau, P., Gerber-Lemaire, S., Alves, F., Salamero, J., Bonacina, L., Wolf, J.-P.: ACS Photonics 2(10), 1416–1422 (2015)CrossRefGoogle Scholar
  9. 9.
    Sosnowska, I., Peterlin-Neumaier, T., Steichele, E.: J. Phys. C. 15, 4835–4846 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    Popov, Y.F., Zvezdin, A.K., Vorob’ev, G.P., Kadomtseva, A.M., Murashev, V.A., Rakov, D.N.: JETP Lett. 57, 69–73 (1993)ADSGoogle Scholar
  11. 11.
    Kadomtseva, A.M., Zvezdin, A.K., Popov, Y.F., Pyatakov, A.P., Vorob’ev, G.P.: JETP Lett. 79, 571–581 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Ruette, B., Zvyagin, S., Pyatakov, A.P., Bush, A., Li, J.F., Belotelov, V.I., Zvezdin, A.K., Viehland, D.: Phys. Rev. B. 69, 064114 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Liu, J., Fang, L., Zheng, F., Ju, S., Shen, M.: Appl. Phys. Lett. 95, 022511 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Jayakumar, O.D., Achary, S.N., Girija, K.G., Tyagi, A.K., Sudakar, C., Lawes, G., Naik, R., Nisar, J., Peng, X., Ahuja, R.: Appl. Phys. Lett. 96, 032903 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, Q., Kim, C.H., Jang, Y.H., Hwang, H.J., Cho, J.H.: Appl. Phys. Lett. 96, 152901 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Lin, Y.H., Jiang, Q., Wang, Y., Nan, C.W., Chen, L., Yu, J.: Appl. Phys. Lett. 90, 172507 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Huang, F., Lu, X., Lin, W., Wu, X., Kan, Y., Zhu, J.: Appl. Phys. Lett. 89, 242914 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Hu, G.D., Cheng, X., Wu, W.B., Yang, C.H.: Appl. Phys. Lett. 91, 232909 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Zerihun, G., Huang, S., Gong, G.S., Yuan, S.L.: Ceram. Int. 41, 6589–6595 (2015)CrossRefGoogle Scholar
  20. 20.
    Xue, X., Tan, G., Liu, W., Hao, H.: J. Alloy. Compd. 604, 57–65 (2014)CrossRefGoogle Scholar
  21. 21.
    Iorgu, A.I., Maxim, F., Matei, C., Ferreira, L.P., Ferreira, P., Cruz, M.M., Berger, D.: J. Alloy. Compd. 629, 62–68 (2015)CrossRefGoogle Scholar
  22. 22.
    Cótica, L.F., Estrada, F.R., Freitas, V.F., Dias, G.S., Santos, I.A., Eiras, J.A., Garcia, D.: J. Appl. Phys. 111, 114105 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Feng, Y., Wang, H., Luo, Y., Shen, Y., Lin, Y.: 146101 113 (2013)Google Scholar
  24. 24.
    Dahiya, R., Agarwal, A., Sanghi, S., Hooda, A., Godara, P.: J. Magn. Magn. Mater. 385, 175–181 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Megha, V., Ashish, R., Solanki, P.S., Choudhary, R.J., Phase, D.M., Kuberkar, D.G.: Appl. Phys. Lett. 103, 033504 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Ghafoor, I., Siddiqi, S. A., Atiq, S., Riaz, S., Naseem, S.: J. Sol-gel Sci. Technol. 74, 352–356 (2015)CrossRefGoogle Scholar
  27. 27.
    Reetu, A., Ashish, S., Sujata, A.: J. Appl. Phys. 110, 073909 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Juan, P.C., Wang, J.L., Hsieh, T.Y., Lin, C.L., Yang, C.M., Shye, D.C.: Microelectron. Eng. 138, 86–90 (2015)CrossRefGoogle Scholar
  29. 29.
    Yoo, Y.J., Hwang, J.S., Lee, Y.P., Park, J.S., Rhee, J.Y., Kang, J.H., Lee, K.W., Lee, B.W., Seo, M.S.: J. Magn. Magn. Mater. 374, 669–675 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Ukai, Y., Yamazaki, S., Kawae, T., Morimoto, A.: Jpn. J. Appl. Phys. 51, 09LE10 (2012)CrossRefGoogle Scholar
  31. 31.
    Mao, W.W., Wang, X.F., Chu, L., Zhu, Y.Y., Wang, Q., Zhang, J., Yang, J.P., Li, X.A., Huang, W.: Phys. Chem. Chem. Phys. 18, 6399–6405 (2016)CrossRefGoogle Scholar
  32. 32.
    Zhang, X.Q., Sui, Y., Wang, X.J., Wang, Y., Wang, Z.: J. Alloy. Compd. 507, 157–161 (2010)CrossRefGoogle Scholar
  33. 33.
    Cheng, G.F., Huang, Y.H., Ge, J.J., Lv, B., Wu, X.S.: J. Appl. Phys. 110, 073909 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Liu, J., Fang, L., Zheng, F.G., Ju, S., Shen, M.R.: Appl. Phys. Lett. 111, 07C707 (2012)Google Scholar
  35. 35.
    Quan, C., Ma, Y.H., Han, Y., Tang, X.X., Lu, M.J., Mao, W.W., Zhang, J., Yang, J.P., Li, X.A., Huang, W.: J. Alloy. Compd. 635, 272–277 (2015)CrossRefGoogle Scholar
  36. 36.
    Mao, W.W., Chen, W., Wang, X.F., Zhu, Y.Y., Ma, Y.H., Xue, H.T., Chu, L., Yang, J.P., Li, X.A., Huang, W.: Ceram. Int. 42, 12838–12842 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Renzhou Wang
    • 1
  • Huazhong Shu
    • 1
    • 3
  • Weiwei Mao
    • 1
    • 2
  • Xingfu Wang
    • 1
    • 2
  • Hongtao Xue
    • 1
  • Liang Chu
    • 1
  • Jianping Yang
    • 1
  • Xing’ao Li
    • 2
  1. 1.College of Science, Advanced Energy Technology CenterNanjing University of Posts and Telecommunications (NUPT)NanjingPeople’s Republic of China
  2. 2.Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), School of Materials Science and Engineering (SMSE)Nanjing University of Posts and Telecommunications (NUPT)NanjingPeople’s Republic of China
  3. 3.School of Telecommunication and Information EngineeringNanjing University of Posts and Telecommunications (NUPT)NanjingPeople’s Republic of China

Personalised recommendations