Ferromagnetic Resonance Investigation of Hexaferrite Nanoparticles Prepared by Sol-Gel Auto-Combustion Method

Original Paper


In this study, the magnetic and electromagnetic wave-absorbing properties of barium and strontium ferrite nanopowders prepared by a sol-gel technique were investigated. To study the structural characteristics of hexaferrites, X-ray diffraction analysis was used. Investigation of the morphologies of nanoparticles was carried out by field emission scanning electron microscopy. A vibrating sample magnetometer was used in order to examine the magnetic properties of synthesized hexaferrites at room temperature. Ferromagnetic resonance (FMR) was used to investigate ferromagnetic resonance of the powders. Experimental results indicated that the materials had hexagonal structures with desirable magnetic properties. A low-field absorption signal was observed with the same phase as the FMR absorption in barium hexaferrites.


Hexaferrite Sol-gel Magnetic properties Ferromagnetic resonance 


  1. 1.
    Guimarães, A.P.: Principles of nanomagnetism. Springer Science & Business Media (2009)Google Scholar
  2. 2.
    Mozaffari, M., Ebrahimi, F., Daneshfozon, S., Amighian, J.: Preparation of Mn–Zn ferrite nanocrystalline powders via mechanochemical processing. J. Alloys Compd. 449(1–2), 65–67 (2008). doi: 10.1016/j.jallcom.2006.03.107 CrossRefGoogle Scholar
  3. 3.
    Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57(7), 1191–1334 (2012). doi: 10.1016/j.pmatsci.2012.04.001 CrossRefGoogle Scholar
  4. 4.
    Goldman, A.: Modern ferrite technology. Springer Science & Business Media (2006)Google Scholar
  5. 5.
    Amirabadizade, A., Shiri, N., Ghasemi, A.: The role of Mn–Mg–Ti–Zr substitution on structural and magnetic features of BaFe12- x (MnMgTiZr) x/4 O 19 nanoparticles. J. Supercond. Nov. Magn. 29(2), 515–520 (2016)CrossRefGoogle Scholar
  6. 6.
    Ebrahimi, F., Bakhshi, S.R., Ashrafizadeh, F., Ghasemi, A.: Synthesis and optimization of the magnetic properties of aligned strontium ferrite nanowires. Mater. Res. Bull. 76, 240–246 (2016). doi: 10.1016/j.materresbull.2015.11.061 CrossRefGoogle Scholar
  7. 7.
    Ghobeiti-Hasab, M., Shariati, Z.: Magnetic properties of Sr-ferrite nano-powder synthesized by sol-gel auto-combustion method. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear. Mater. Metallurgical Eng. 8(10), 1095–1098 (2014)Google Scholar
  8. 8.
    Fang, J., Wang, J., Gan, L.M., Ng, S.C., Ding, J., Liu, X.: Fine strontium ferrite powders from an ethanol-based microemulsion. J. Am. Ceram. Soc. 83(5), 1049–1055 (2000)CrossRefGoogle Scholar
  9. 9.
    Garcı, L., Reséndiz-Hernández, P.: Study of SrFe 12 O 19 synthesized by the sol–gel method. J. Alloys Compd. 369(1), 182–184 (2004)Google Scholar
  10. 10.
    Meng, Y., He, M., Zeng, Q., Jiao, D., Shukla, S., Ramanujan, R., Liu, Z.: Synthesis of barium ferrite ultrafine powders by a sol–gel combustion method using glycine gels. J. Alloys Compd. 583, 220–225 (2014)CrossRefGoogle Scholar
  11. 11.
    Luo, H., Rai, B., Mishra, S., Nguyen, V., Liu, J.: Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324 (17), 2602–2608 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Pillai, V., Kumar, P., Shah, D.: Magnetic properties of barium ferrite synthesized using a microemulsion mediated process. J. Magn. Magn. Mater. 116(3), L299–L304 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    Lax, B., Button, K.J.: Microwave ferrites and ferrimagnetics (1962)Google Scholar
  14. 14.
    Chen, Y., Nedoroscik, M.J., Geiler, A.L., Vittoria, C., Harris, V.G.: Perpendicularly oriented polycrystalline BaFe11. 1Sc0. 9O19 hexaferrite with narrow FMR linewidths. J. Am. Ceram. Soc. 91(9), 2952–2956 (2008)CrossRefGoogle Scholar
  15. 15.
    Koul, S.K., Bhat, B.: Microwave and millimeter wave phase shifters, vol. 1 Artech House Boston and London (1991)Google Scholar
  16. 16.
    Alvarez, G., Montiel, H., de Cos, D., Zamorano, R., García-Arribas, A., Barandiaran, J.M., Valenzuela, R.: Experimental and theoretical correlation between low-field power absorption and magnetoimpedance in amorphous materials. J. Non-Cryst. Solids 353(8–10), 902–904 (2007). doi: 10.1016/j.jnoncrysol.2006.12.089 ADSCrossRefGoogle Scholar
  17. 17.
    Montiel, H., Alvarez, G., Gutiérrez, M.P., Zamorano, R., Valenzuela, R.: Microwave absorption in Ni–Zn ferrites through the Curie transition. J. Alloys Compd. 369 (1–2), 141–143 (2004). doi: 10.1016/j.jallcom.2003.09.074 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations