Advertisement

Structure and Magnetic Properties of Ce-Substituted Yttrium Iron Garnet Prepared by Conventional Sintering Techniques

  • Tao Shen
  • Hailong Dai
  • Mingxin Song
  • Hongchen Liu
  • Xinlao Wei
Original Paper

Abstract

Y3−xCe x Fe5 O 12 (CeYIG) ceramics, with x = 0, 0.15, 0.25, 0.35, 0.45, and 0.5, were fabricated by a conventional ceramic sintering technique. We studied the structures and magnetic fields of a series of CeYIG ceramics using X-ray powder diffraction, a scanning electron microscope, and a superconducting quantum interference device magnetometer. Findings showed that the substitution limit of the concentration of Ce3+ ions in the yttrium iron garnet structure was approximately x = 0.25. An extra CeO2 phase was detected in the ceramic when the addition of CeO2 content overtook the limit. The lattice constants and relative densities increased by increasing the Ce3+ contents in the ceramics. First, the saturation magnetization increased gradually with increases in the substitute concentration of Ce3+ ions and then decreased gradually when x = 0.35, 0.45, and 0.5. Overall, this study showed that the Y3−xCe x Fe5 O 12 material with x ≤ 0.15 exhibited excellent magnetic properties. Hence, the material show promise for magneto-optical and microwave communication applications.

Keywords

Yttrium iron garnet Magnetic material. Conventional sintering technique X-ray powder diffraction 

Notes

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51307036 and No. 51677044).

References

  1. 1.
    Mehmet, C., Onbasli, Taichi, G., Sun, X.Y., Nathalie, H., Ross, C.A.: Opt. Express. 22, 25183–25192 (2014)CrossRefGoogle Scholar
  2. 2.
    Tsay, C.Y., Liu, C.Y., Liu, K.S., Lin, I.N., Hu, L.J., Yeh, T.S.: J. Magn. Magn. Mater. 239, 490–497 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Takeda, H., John, S.: Phys. Rev. A. 78, 023804–023811 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Garskaite, E., Gibson, K., Leleckaite, A., Glaser, J., Niznansky, D., Kareive, A., Mayer, H.J.: Chem. Phys. 323, 204–210 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Nazlan, R., Hashim, M., Ibrahim, I.R., Ismail, I.: J. Supercond. Nov. Magn. 27, 631–639 (2014)CrossRefGoogle Scholar
  6. 6.
    Tholkappiyan, R., Vishista, K.: Appl. Surf. Sci. 351, 1016–1024 (2015)CrossRefGoogle Scholar
  7. 7.
    Goto, T., Onbasli, M.C., Ross, C.A.: Opt. Express. 20, 28507–28516 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Huang, M., Zhang, S.Y.: Appl. Phys., A Mater. Sci. Process. 74, 177–180 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Gota, T., Onbasli, M.C., Kim, D.H., Singh, V., Inoue, M., Kimerling, L.C., Ross, C.A.: Opt. Express. 22, 19047–19054 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Simma, Z., Gerber, R., Reid, T., Tesar, R., Atlinson, R., Papakonstantinu, P.: J Phys Chem Solids. 59, 111–117 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Shen, T., Hu, C., Yang, W.L., Yang, W.L., Liu, H.C., Wei, X.L.: Mat. Sci. Semicon. Proc. 34, 114–122 (2015)CrossRefGoogle Scholar
  12. 12.
    Shen, T., Hu, C., Dai, H.L., Yang, W.L., Liu, H.C., Wei, X.L.: Mater. Res. Innov. 19, 684–693 (2015)Google Scholar
  13. 13.
    Shen, T., Hu, C., Dai, H.L., Yang, W.L., Liu, H.C., Wei, X.L.: Mater. Sci-Poland. 33, 169–178 (2015)Google Scholar
  14. 14.
    Cheng, Z., Yang, H., Yu, L., Cui, Y.: J. Magn. Magn. Mater. 302, 259–262 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Sekijima, T., Kishimono, H., Fujiit, T., Wakino, K., Okada, M.: Jpn. J. Appl. Phys. 38, 5874–5880 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Gamaliy, E., Epankova, J.K., Ohout, A., Snezhko, M.K., Ucear, K., Gomi, M., Futuyama, H.: J. Magn. Magn. Mater 766, 242–245 (2002)Google Scholar
  17. 17.
    Huang, M., Zhang, S.Y.: Appl. Phys. A. 74, 177–185 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Park, M.B., Chon, H.: J. Magn. Magn. Mater. 231, 253–261 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Shen, J.Y., Johnston, S., Shang, S.L., Anderson, T.: J. Cryst. Growth. 240, 6–15 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Segall, M.D., Lindan, P.J., Probert, M.J.: J. Phys.: Cond. Matter. 14, 2717–2724 (2002)ADSGoogle Scholar
  21. 21.
    Shivakumar, I.R., Martin, O.S.: Phys. Rev. Lett. 101, 055504–055514 (2008)CrossRefGoogle Scholar
  22. 22.
    Higucchi, S., Furukaway, Kamada, O., Kitamura, K.: Jpn. J. Appl. Phys. 38, 4122–4131 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Guo, X.Y., Tawakoni, A.H., Sutton, S., Kukkadapu, R.K., Qi, L., Lanzarotta, A., Newville, M., Asta, M.: Navrotsky.: A. Chem. Mater. 26, 1133–1142 (2014)Google Scholar
  24. 24.
    Guo, X.F., Rak, Z., Tawakoni, A.H., Bcker, U., Ewing, R.C., Navrotsky, A.: J. Mater. Chem. A. 2, 16945–16953 (2014)CrossRefGoogle Scholar
  25. 25.
    Tze, C.M., Jyh, C.C.: J. Magn. Magn. Mater. 302, 74–81 (2006)CrossRefGoogle Scholar
  26. 26.
    Gramsch, S.A., Morss, L.R.: J. Alloys Compd. 207, 432–438 (1994)CrossRefGoogle Scholar
  27. 27.
    Vajargah, S.H., Hoseeini, H.R., Nemati, Z.A.: J. Alloys Compd. 430, 339–346 (2007)CrossRefGoogle Scholar
  28. 28.
    Strocka, B., Holist, P., Tolksdorf, W.: Philips J. Res. 33, 186–192 (1978)Google Scholar
  29. 29.
    Liu, Y.L., Mou, D., Li, X.Y., Zhang, P.X.: IEEE Trans. Magn. 23, 3329–3336 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    Shao, Y.J., Qi, X.D., Lin, C.R., Huang, J.C.: J. Appl. Phys. 109, 508–515 (2011)CrossRefGoogle Scholar
  31. 31.
    Fu, C., Xian, W., Zekun, F., Yajin, C., Vincent, G.H.: AIP Adv. 6, 055918–055925 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Engineering Dielectrics and Its Application, Ministry of EducationHarbin University of Science and TechnologyHarbinChina
  2. 2.College of Applied SciencesHarbin University of Science and TechnologyHarbinChina
  3. 3.School of Electrical Engineering and AutomationHarbin Institute of TechnologyHarbinChina

Personalised recommendations