Advertisement

Microstructure and Magnetic Properties of Sn1 − x Ni x O2 Thin Films Prepared by Flash Evaporation Technique

  • M. Kuppan
  • S. Kaleemulla
  • N. Madhusudhana Rao
  • C. Krishnamoorthi
  • G. Venugopal Rao
  • I. Omkaram
  • D. Sreekantha Reddy
Original Paper

Abstract

An effort was made to develop semiconductor oxide-based room temperature dilute magnetic semiconductor (DMS) thin films based on wide band gap and transparent host lattice with transition metal substitution. The Sn\(_{\mathrm {1}-x}\)Ni\(_{x}\textit {O}_{\mathrm {2}}\) (\(x\,= \mathrm {0.00, 0.03, 0.05, 0.07, 0.10, and \,0.15}\)) thin film samples were prepared on glass substrates by flash evaporation technique. All the samples were shown single phase crystalline rutile structure of host SnO\(_{\mathrm {2}}\) with dominant (110) orientation. The Ni substitution promotes reduction of average crystallite size in SnO\(_{\mathrm {2}}\) as evidenced from the reduction of crystallite size from 40 (SnO\(_{\mathrm {2}}\)) to 20 nm (Sn\(_{\mathrm {0.85}}\)Ni\(_{\mathrm {0.15}}\textit {O}_{\mathrm {2}}\)). In the energy dispersive spectra as well as X-ray photoelectron spectra of all the samples show, the chemical compositions are close to stoichiometric with noticeable oxygen deficiency. The crystalline films were formed by coalescence of oval-shaped polycrystalline particles of 100 nm size as evidenced from the electron micrographs. The energy band gap of DMS films decreases from 4 (SnO\(_{\mathrm {2}}\)) to 3.8 eV (x \(=\) 0.05) with increase of Ni content. The magnetic hysteresis loops of all the samples at room temperature show soft ferromagnetic nature except for SnO\(_{\mathrm {2}}\) film. The SnO\(_{\mathrm {2}}\) films show diamagnetic nature and it converts into ferromagnetic upon substitution of 3 % Sn\(^{\mathrm {4+}}\) by Ni\(^{\mathrm {2+}}\). The robust intrinsic ferromagnetism (saturation magnetization, 21 emu/cm\(^{\mathrm {3}}\)). Further increase of Ni content weakens ferromagnetic strength due to Ni-O antiferromagnetic interactions among the nearest neighbour Ni ions via O\(^{\mathrm {2-}}\) ions. The observed magnetic properties were best described by bound magnetic polarons model.

Keywords

Thin films Dilute magnetic semiconductors Ferromagnetism Flash evaporation 

Notes

Acknowledgments

Authors thank VIT-SIF for providing XRD and UV-Vis spectrometer facilities.

References

  1. 1.
    Zhao, L., Zhang, B., Pang, Q., Yang, S., Zhang, S., Ge, W., Wang.: J. Appl. Phys. Lett. 89, 092111–092114 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Pekarek, T.M., Miotkowski, I., Crooker, B.C.: J. Appl. Phys. 79, 6436–6439 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Herbich, M., Mac, W., Twardowski, A., Ando, K., Shapira, Y., Demianiuk, M.: Phys. Rev. B 58, 1912–1921 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Ohno, H., Munekata, H., Penney, T., Molnar, S.V., Chang, L.L.: Phys. Rev. Lett. 68, 2664–2667 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., Katsumoto, S., Iye, Y.: Appl.Phys. Lett. 69, 363–365 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Mishra, A.K., Das, D.: J. Mater. Sci. Eng. B 171, 5–10 (2010)CrossRefGoogle Scholar
  7. 7.
    Weissmann, M., Errico, L.A.: J.Physica B 398, 179–183 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Higgins, J., Lanci, C., Simpson, J.R., Browning, N.D., Das Sarma, S., Drew, H.D., Greene, R.L., Venkatesan, T.: Phys. Rev. Lett. 91, 772051–772054 (2003)CrossRefGoogle Scholar
  9. 9.
    Wang, Q.J., Tan, Q.H., Liu, Y.K.: J. Physica B 450, 54–57 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Cai, J.Z., Li, L., Wang, S., Zou, W.Q., Wu, X.S., Zhang, F.M.: J. Physica B 424, 42–46 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Xiao, Z.R., Fan, X.F., Guan, L.X., Huan, C.H.A., Kuo, J.L., Wang, L.: J. Phys. Condens. Matter 21(6pp), 272202 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Wu, K., Gu, S., Tang, K., Zhu, S., Zhou, M., Huang, Y., Xu, M., Zhang, R., Zheng, Y.: J. Physica B 407, 2429–2433 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Chopra, K.L., Major, S., Pandya, D.K.: Thin Solid Films 102, 1–96 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    Comini, E., Faglia, G., Sberveglieri, G., Pan, Z.W., Wang, Z.L.: J. Appl. Phys. Lett. 81, 1869–1871 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Fukai, Y., Kondo, Y., Mori, S., Suzuki, E.: J. Electrochem. Commun. 9, 1439–1443 (2007)CrossRefGoogle Scholar
  16. 16.
    Agashe, C., Aiyer, R.C., Garaje, A.: Int. J. Appl. Ceram. Technol. 5, 181–187 (2008)CrossRefGoogle Scholar
  17. 17.
    Kolmakov, A., Zhang, Y.X., Cheng, G.S., Moskovits, M.: Advanced Materials 15, 997–1000 (2003)CrossRefGoogle Scholar
  18. 18.
    Mehraj, S., Ansari, M.S.: Alimuddin.: Physica E 65, 84–92 (2015)ADSGoogle Scholar
  19. 19.
    Bilovol, V., Herme, C., Jacobo, S., Cabrera, A.F.: Materials Chemistry and Physics 135, 334–339 (2012)CrossRefGoogle Scholar
  20. 20.
    Ahmed, T., Khatoon, S., Coolahan, K.: J. Alloys. Comp. 615, 263–269 (2015)CrossRefGoogle Scholar
  21. 21.
    Kaushal, A., Bansal, P., Vishoni, R., Choudhary, N., Kaur, D.: Physica B: Condensed Matter 404, 3732–3738 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Kuppan, M., Kaleemulla, S., Rao, N.M., Krishna, N.S., Begam, M.R., Shobana, M.: Adv. Cond. Matt. Phys. article 284237 (2014)Google Scholar
  23. 23.
    Nahass, E., Ismail, E.M.M., Hagary, E.M.: J. Alloys. Comp. 646, 937–945 (2015)CrossRefGoogle Scholar
  24. 24.
    Cullity, B., Stock, S.R.: Elements of X-ray diffraction; Prentice-Hall Upper Saddle River. NJ, 170 (2001)Google Scholar
  25. 25.
    Aragón, F. H., Coaquira, J.A.H., Hidalgo, P., Brito, S.L.M., Gouvêa, D., Castro, R.H.R.: J. Non-Cryst. Solids 356, 2960–2964 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Kwoka, M., Ottaviano, L., Passacantando, M., Santucci, S., Czempik, G.: Thin Solid Films 490, 36–42 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Bouaine, A., Brihi, N., Schmerber, G., Ulahq-Bouillet, C., Colis, S., Dinia, A.: J. Phys. Che. C 111, 2924–2928 (2007)CrossRefGoogle Scholar
  28. 28.
    Wang, J., Zhou, W., Wu, P.: Appl. Surf. Sci 314, 188–192 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Xiao, Y., Ge, S., Xi, L., Zuo, Y., Zhou, X., Zhang, L., Wang, G., Han, X., Wen, Z.: J. App. Surf. Sci. 255, 7981–7984 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., Coey, J.M.D.: Phys. Rev. Lett. 93, 177206–1–4 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Nature Materials 4, 173–179 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Kaminsk, A., Das Sarma, S.: Phys. Rev. Lett. 88, 2472021–24 (2002)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Kuppan
    • 1
  • S. Kaleemulla
    • 1
  • N. Madhusudhana Rao
    • 1
  • C. Krishnamoorthi
    • 1
  • G. Venugopal Rao
    • 2
  • I. Omkaram
    • 3
  • D. Sreekantha Reddy
    • 4
  1. 1.Thin Films Laboratory, Centre for Crystal GrowthVIT UniversityVelloreIndia
  2. 2.Materials Physics DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.Department of Electronics and Radio EngineeringKyung Hee UniversityYongin-siRepublic of Korea
  4. 4.Department of Physics and Sungkyukwan Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations