Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 4, pp 1019–1024 | Cite as

Ab Initio Study of Electronic and Magnetic Properties in TM-Doped Germanene

Original Paper


The structural, electronic, and magnetic properties of five different transition-metal (TM) atoms (Co, Cu, Mn, Fe, and Ni)doped germanene are investigated using density functional theory. Magnetism is observed in case of Co, Mn, and Fe. Among all the substituted systems, Mn-substituted system exhibits the largest magnetic moment of 3.08 μB. Hence, the ferromagnetic (FM) interaction of two Mn-doped germanene was studied. The results show that the ferromagnetic states originate by the pd hybridization mechanism between Mn and its neighboring Ge atoms. However, the FM interaction is obviously depressed by the increasing Mn–Mn distance, which could be well explained by the Zener-RKKY theory.


Germanene TM dopant Electronic structure First-principles calculation 



We thank the Supercomputer Center of ECNU for using the Dawn 5000A supercomputer. The work is supported by the major scientific projects of Shanghai (Grant No. AASH1219).


  1. 1.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Fuhrer, M.S., Lau, C.N., MacDonald, A.H.: Graphene: materially better carbon. MRS Bull. 35, 289 (2010)CrossRefGoogle Scholar
  4. 4.
    Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., Ciraci, S.: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Roome, N.J., Carey, J.D.: Beyond graphene: stable elemental monolayers of silicene and germanene. ACS Appl. Mater. Interface 6, 7743 (2014)CrossRefGoogle Scholar
  6. 6.
    Ni, Z.Y., Liu, Q.H., Tang, K.C., Zheng, J.X., Zhou, J., Qin, R., Gao, Z.X., Yu, D.D., Lu, J.: Tunable bandgap in silicene and germanene. Nano Lett. 12, 113 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D., Jaszczak, J.A., Geim, A.K.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Liu, C.C., Feng, W., Yao, Y.: Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P., Geim, A.K.: Room-temperature quantum hall effect in graphene Sicence 315, 1379 (2007)Google Scholar
  10. 10.
    Hashmi, A., Hong, J.: Transition metal doped phosphorene: first-principles study. J. Phys. Chem. C 119, 9198 (2015)CrossRefGoogle Scholar
  11. 11.
    Feng, N., Mi, W., Cheng, Y., Guo, Z., Schwingenschlögl, U., Bai, H.: First principles prediction of the magnetic properties of Fe-X-6 (X = S, C, N, O, F) doped monolayer mos 2. Sci. Rep. 4, 3987 (2014)ADSGoogle Scholar
  12. 12.
    Yun, W.S., Lee, J.D.: Unexpected strong magnetism of Cu doped single-layer MoS 2 and its origin. Phys. Chem. Chem. Phys. 16, 8990 (2014)CrossRefGoogle Scholar
  13. 13.
    Andriotis, A.N., Menon, M.: Tunable magnetic properties of transition metal doped MoS 2. Phys. Rev. B 90, 125304 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Pang, Q., Li, L., Zhang, C.L., Wei, X.M., Song, Y.L.: Structural, electronic and magnetic properties of 3d transition metal atom adsorbed germanene: a first-principles study. Mater. Chem. Phys. 160, 96 (2015)CrossRefGoogle Scholar
  15. 15.
    Sun, M.L., Ren, Q.Q., Wang, S.K., Zhang, Y.J., Du, Y.H., Yu, J., Tang, W.C.: Magnetism in transition-metal-doped germanene: a first-principles study. Comp. Mater. Sci. 118, 112 (2016)CrossRefGoogle Scholar
  16. 16.
    Wang, H.T., Wang, Q.X., Cheng, Y.C., Li, K., Yao, Y.B., Zhang, Q., Dong, C.Z., Wang, P., Schwingenschlogl, U., Yang, W., Zhang, X.X.: Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    He, Z.Y., He, K., Robertson, A.W., Kirkland, A.I., Kim, D., Ihm, J., Yoon, E., Lee, G.D., Warner, J.H.: Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett. 14, 3766 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Dávila, M.E., Xian, L., Cahangirov, S., Rubio, A., Lay, G.L.: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014)CrossRefGoogle Scholar
  19. 19.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Pang, Q., Zhang, C.L., Li, L., Fu, Z.Q., Wei, X.M., Song, Y.L.: Adsorption of alkali metal atoms on germanene: a first-principles study. Appl. Surf. Sci. 314, 15 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Xia, W., Hu, W., Li, Z., Yang, J.: A first-principles study of gas adsorption on germanene. Phys. Chem. Chem. Phys. 16, 22495 (2014)CrossRefGoogle Scholar
  24. 24.
    Kaloni, T.P., Schwingenschlögl, U.: Stability of germanene under tensile strain. Chem. Phys. Lett. 583, 137 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Kaloni, T.P.: Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms. J. Phys. Chem. C 118, 25200 (2014)CrossRefGoogle Scholar
  26. 26.
    Zener, C.: Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951)ADSCrossRefMATHGoogle Scholar
  27. 27.
    Ramasubramaniam, A., Naveh, D.: Mn-doped monolayer MoS 2: an atomically thin dilute magnetic semiconductor. Phys. Rev. B 87, 195201 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Sato, K., Bergqvist, L., Kudrnovský, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., Zeller, R.: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Kanamori, J., Terakura, K.: A general mechanism underlying ferromagnetism in transition metal compounds. J. Phys. Soc. Jpn. 70, 1433 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electronic EngineeringShang Hai Jian Qiao UniversityShanghaiChina
  2. 2.Key Laboratory of Polar Materials and DevicesEast China Normal UniversityShanghaiChina
  3. 3.School of Electronics and InformationNantong UniversityNantongChina

Personalised recommendations