Characterization and Magnetic Properties of Nanoferrite ZnFe2−x La x O 4 Prepared by Co-Precipitation Method

  • D. EL-Said Bakeer
  • A. I. Abou-Aly
  • N. H. Mohammed
  • R. Awad
  • M. Hasebbo
Original Paper


Nanosize spinel ferrite with nominal compositions ZnFe2−x La x O 4, 0.0 ≤ x ≤ 0.3, are prepared using stoichiometric amounts of ZnCl2, FeCl3⋅ 6H2O, and LaCl3⋅ 7H2O by the co-precipitation method. The structures and both the optical and magnetic properties of the prepared samples are investigated. X-ray powder diffraction analysis shows a single-phase cubic spinal structure up to x= 0.2. The lattice parameter a significantly increases with increasing x, which confirms the substitution of La at Fe sites. The crystallite size, estimated by the Scherrer formula, Williamson–Hall method, size–strain plot method, and transmission electron microscope, has been found in the range of 7–14 nm. The Fourier transform infrared (FTIR) spectra indicate the presence of absorption bands in the range of 390–561 cm−1, which is a common feature of spinel ferrite. The magnetic hysteresis of the investigated samples is studied using the vibrating sample magnetometer (VSM). The saturation magnetization, coercivity, and remanent magnetization have nonsystematic change as the La substitution increases. This is due to the fact that the magnetic properties of nanoferrites are strongly dependent on the cation distribution among tetrahedral and octahedral sites in the cubic spinel structure as well as crystalline size. Electron paramagnetic resonance (EPR) spectra of ZnFe2−x La x O 4 are measured at room temperature in order to study the effect of La substitution on the g value, resonance field (H r), peak-to-peak line width (ΔH pp), and spin–spin relaxation time constant (T 2)of the ZnFe2 O 4 nanoferrite.


ZnFe2O4 nanoparticle Co-precipitation method Williamson–Hall method VSM EPR 



This work was performed in the Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt.


  1. 1.
    Bruchez, M., Moronne Jr. M., Gin, P., Weiss, S., Paul, A.: Alivisatos Science, New Series 281, 2013 (1998)Google Scholar
  2. 2.
    Degueldre, C., Kuri, G., Borca, C.N., Grolimund, D.: J. Corros. Sci. 51, 1690 (2009)CrossRefGoogle Scholar
  3. 3.
    Tae-Jong, Y., Jun Sung, K., Byung Geol, K., Kyeong Nam, Y., Myung-Haing, C., Jin-Kyu, L.C.: Angew. Chem., Int. Ed. 44, 1068 (2005)CrossRefGoogle Scholar
  4. 4.
    Cunningham, C.H., Arai, T., Yang, P.C., McConnell, M.V., Pauly, J.M., Connolly, S.M.: Magn. Reson. Med. 53, 999 (2005)CrossRefGoogle Scholar
  5. 5.
    Giri, A.K., Pellerin, K., Pongsaksawad, W., Sorescu, M., Majetich, S.A.: IEEE Trans. Magn. 36, 3029 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Cullity, B.D., Graham, C.D.: Introduction to Magnetic materials, Second Ed. IEEE Press and Wiley, New Jersey (2009)Google Scholar
  7. 7.
    Stewart, S.J., Figueroa, S.J.A., Ramallo López, J.M., Marchetti, S.G., Bengoa, J.F., Prado, R.J., Requejo, F.G.: Phys. Rev. B 75, 073408 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Akhtar, M.J., Nadeem, M., Javaid, S., Atif, M.: J. Phys. Condens. Matter. 21, 405303 (2009)CrossRefGoogle Scholar
  9. 9.
    Borhan, A.I., Hulea, V., Iordan, A.R., Palamaru, M.N.: Polyhedron 70, 110 (2014)CrossRefGoogle Scholar
  10. 10.
    Borhan, A.I., Iordan, A.R., Palamaru, M.N.: Mater. Res. Bull. 48, 2549 (2013)CrossRefGoogle Scholar
  11. 11.
    Toledo, J.A., Valenzuela, M.A., Bosch, P., Armendáriz, H., Montoya, A., Navaa, N., Vázquez, A.: Appl. Catal. A Gen. 198, 235 (2000)CrossRefGoogle Scholar
  12. 12.
    Nachbaura, V., Tauvel, G., Verdierb, T., Jeana, M., Juraszekb, J., Houvet, D.: J. Alloys Compd. 473, 303 (2009)CrossRefGoogle Scholar
  13. 13.
    Tholkappiyan, R., Vishista, K.: Physica B 448, 177 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Kumari, N., Kumar, V., Singh, S.K.: J. Alloys Compd. 622, 628 (2015)CrossRefGoogle Scholar
  15. 15.
    Blanco-Gutiérrez, V., Torralvo-Fernández, M.J., Sáez-Puche, R.: J. Phys. Chem. C 114, 1789 (2010)CrossRefGoogle Scholar
  16. 16.
    Bamzai, K.K., Kour, G., Kaur, B., Kulkarni, S.D.: J. Magn. Magn. Mater. 327, 159 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Rana, A., Thakur, O.P., Kumar, V.: Mater. Lett. 65, 3191 (2011)CrossRefGoogle Scholar
  18. 18.
    Kumara, P., Sharmab, S.K., Knobelb, M., Singha, M.: J. Alloys Compd. 508, 115 (2010)CrossRefGoogle Scholar
  19. 19.
    Kumar, L., Kar, M.: Ceram. Int. 38, 4771 (2012)CrossRefGoogle Scholar
  20. 20.
    Ali, A.I., Ahmed, M.A., Okasha, N., Hammam, M., Sonf, J.Y.: J. Materr. Res. Technol 2(4), 356 (2013)CrossRefGoogle Scholar
  21. 21.
    Dixit, G., Singh, J.P., Srivastava, R.C., Agrawal, H.M.: J. Magn. Magn. Mater 324, 479 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Pascuta, P., Vladescu, A., Borodi, G., Culea, E., Tetean, R.: Ceram. Int. 37, 3343 (2011)CrossRefGoogle Scholar
  23. 23.
    Li, Q., Bo, C., Wang, W.: Mater. Chem. Phys 124, 891 (2010)CrossRefGoogle Scholar
  24. 24.
    Masoudpanah, S.M., Seyyed Ebrahimi, S.A., Derakhshani, M., Mirkazemi, S.M.: J. Magn. Magn. Mater 370, 122 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Hu, P., Pan, D., Wang, X., Tian, J., Wang, J., Zhang, S., Volinsky, A.: J. Magn. Magn. Mater 323, 569 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Laokul, P., Amornkitbamrung, V., Seraphin, S., Maensiri, S.: Curr. Appl. Phys. 11, 101 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Hwang, C.C., Tsai, J.S., Huang, T.H.: Mater. Chem. Phys 93, 330 (2005)CrossRefGoogle Scholar
  28. 28.
    Ishaque, M., Islam, M.U., Azhar Khan, M., Rahman, I.Z., Genson, A., Hampshire, S.: Physica B 405, 1532 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Rao, A.D.P., Ramesh, B., Rao, P.R.M., Raju, S.B.: J. Alloys Compd 282, 268 (1999)CrossRefGoogle Scholar
  30. 30.
    Zak, K., Abd. Majid, W.H., Abrishami, M.E., Yousefi, R.: Solid State Sci. 13, 251e256 (2011)Google Scholar
  31. 31.
    Tagliente, M.A., Massaro, M.: Nucl. Inst. Methods Phys. Res. B 266, 1055 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Watcharapasorn, A., Jiansirisomboon, S.: Ceram. Int. 34, 769 (2008)CrossRefGoogle Scholar
  33. 33.
    Niyaifar, M.: Journal of Magnetics 19(2), 101 (2014)CrossRefGoogle Scholar
  34. 34.
    Selvan, R. K., Augustin, C. O., Berchmans, L. J., Saraswathi, R.: Mater. Res. Bull. 38(1), 41 (2003)CrossRefGoogle Scholar
  35. 35.
    Xavier, S., Thankachan, S., Jacob, B.P., Mohammed, E.M.: J. Nanosci., 2013 (2013)Google Scholar
  36. 36.
    Topkaya, R., Baykal, A., Demir, A.: J. Nanoparticle Res. 15, 1359 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hystersis in hetrogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A 240, 599 (1948)ADSCrossRefGoogle Scholar
  38. 38.
    Jadhav, S.S., Shirsath, S.E., Patange, S.M., Jadhav, K.M.: J. Appl. Phys. 108, 093920 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Gazeau, F., Bacri, J.C., Gendron, F., Perzynski, R., Raikher, Y.L., Stepanov, V.I., Dubois, E.: J. Magn. Magn. Mater 175, 186 (1998)Google Scholar
  40. 40.
    Yadava, N., Kumar, A., Rana, P.S., Rana, D.S., Arora, M., Pant, R.P.: Ceram. Int. 8623, 41 (2015)Google Scholar
  41. 41.
    Shahane, G.S., Kumar, A., Arora, M., Pant, R.P., Lal, K.: J. Magn. Magn. Mater 322, 1015 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Byeon, S.C., Hong, K.S., Kim, I.T: J. Appl. Phys 83, 6873 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    Kumar, A., Rana, P.S., Yadav, M.S., Pant, R.P.: Ceram. Int. 41, 1297 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • D. EL-Said Bakeer
    • 1
  • A. I. Abou-Aly
    • 2
  • N. H. Mohammed
    • 2
  • R. Awad
    • 3
  • M. Hasebbo
    • 2
  1. 1.Physics Department, Faculty of ScienceDamanhour UniversityDamanhourEgypt
  2. 2.Physics Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  3. 3.Physics Department, Faculty of ScienceBeirut Arab UniversityBeirutLebanon

Personalised recommendations