Advertisement

Field-Controllable Spin Filter Based on Parallel Quantum Dot Systems

  • Yong-Chen Xiong
  • Shi-Jun Luo
  • Jun-Tao Yang
  • Hai-Ming Huang
Original Paper

Abstract

In this paper, we investigate the spin-polarized transport through parallel N−dot (N = 1, 2, 3) systems in the strongly correlated regime. We focus our attention on the responses of the N t o t = i n t e g e r states to an increasing magnetic field B, where N t o t is the total charge number on the dots. We show that when the charge level 𝜖 is chosen at the particle-hole (p-h) symmetric case, spin filtering is difficult to occur. While if 𝜖 is beyond the p-h symmetric point, perfect spin-polarized currents could be achieved, and the spin directions can be easily manipulated by tuning external electric and/or magnetic fields, making it easy to be realized in future experiments of the ideas. To approach these problems, the celebrated numerical renormalization group (NRG) technique is implemented, the dynamical properties and the quantum fluctuations are shown.

Keywords

Spin filter Quantum dot system Numerical renormalization group Strongly correlated effect 

Notes

Acknowledgments

We acknowledge financially the support from NSFC (no. 11504102), the Natural Science Foundation of Hubei Province (no. 2015CFC789), the Major Scientific Research Project Pre-funds (no. 2014XY06), and the Doctoral Scientific Research Foundation of HUAT (no. BK201407).

References

  1. 1.
    Prinz, G.A: Science 282, 1660 (1998)CrossRefGoogle Scholar
  2. 2.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, K.L., Chtchelkanova, A.Y., Treger, D.M.: Science 294, 1488 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    žutić, I., Fabian, J., Das Sarma, S.: Rev. Mod. Phys. 76, 323 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Bader, S.D., Parkin, S.S.P.: Annu. Rev. Condens. Matter Phys. 1, 71 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    DiVincenzo, D.P.: Science 309, 2173 (2005)CrossRefGoogle Scholar
  6. 6.
    Fujita, T., Jalil, M.B.A., Tan, S.G., Murakami, S.: J. Appl. Phys. 110, 121301 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Zhang, P., Xue, Q.K., Wang, Y.P., Xie, X.C.: Phys. Rev. Lett. 89, 286803 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Kiyama, H., Fujita, T., Teraoka, S., Oiwa, A., Tarucha, S.: Appl. Phys. Lett. 104, 263101 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Recher, P., Sukhorukov, E.V., Loss, D.: Phys. Rev. Lett. 85, 1962 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    König, J., Martinek, J.: Phys. Rev. Lett. 90, 166602 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Aligia, A.A., Salguero, L.A.: Phys. Rev. B 70, 075307 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Nian, L.L., Zhang, L., Tang, F.R., Xue, L.P., Zhang, R., Bai, L.: J. Appl. Phys. 115, 213704 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Ying, Y.B., Jin, G.J., Ma, Y.Q.: Phys.: Condens. Matter 21, 275801 (2009)ADSGoogle Scholar
  14. 14.
    Chi, F., Zheng, J., Sun, L.L.: Appl. Phys. Lett. 92, 172104 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Matityahu, S., Aharony, A., Entin-Wohlman, O., Tarucha, S.: New. J. Phys. 15, 125017 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Vernek, E., Büsser, C.A., Anda, E.V., Feiguin, A.E., Martins, G.B.: Appl. Phys. Lett. 104, 132401 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Ye, C.Z., Li, Z.J., Nie, Y.H., Liang, J.Q.: J. Appl. Phys. 104, 053721 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Wang, W.Z: Nanotechnology 22, 205203 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Xiong, Y.C., Wang, W.Z., Luo, S.J., Yang, J.T.: Superlattice. Microst. 90, 288 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Chi, F., Li, S.S.: J. Appl. Phys. 100, 113703 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Chi, F., Yuan, X.Q., Zheng, J.: Nanoscale Res. Lett. 3, 343 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Krishna-Murthy, H.R., Wilkins, J.W., Wilson, K.G: Phys. Rev. B 21, 1003 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    Krishna-Murthy, H.R., Wilkins, J.W., Wilson, K.G.: Phys. Rev. B 21, 1044 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    Costi, T.A., Hewson, A.C., Zlatiá, V.: J. Phys.: Condens. Matter 6, 2519 (1994)ADSGoogle Scholar
  25. 25.
    Bulla, R., Costi, T.A., Pruschke, T.: Rev. Mod. Phys. 80, 395 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Meir, Y., Wingreen, N.S., Lee, P.A.: Phys. Rev. Lett. 70, 2601 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Hofstetter, W.: Phys. Rev. Lett. 85, 1508 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Weichselbaum, A., von Delft, J.: Phys. Rev. Lett 99, 076402 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Z̆itko, R., Bonča, J.: Phys. Rev. B 74, 045312 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Z̆itko, R., Bonča, J.: Phys. Rev. B 76, 241305 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Langreth, D.C.: Phys. Rev. 150, 516 (1966)ADSCrossRefGoogle Scholar
  32. 32.
    Ng, T.K., Lee, P.A.: Phys. Rev. Lett. 61, 1768 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    Wang, W.Z.: Phys. Rev. B 83, 075314 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Xiong, Y.C., Luo, S.J., Huang, H.M., Yang, J.T.: J. Supercond. Nov. Magn. 28, 2553 (2015)CrossRefGoogle Scholar
  35. 35.
    Heersche, H.B., de Groot, Z., Folk, J.A., Kouwenhoven, L.P., van der Zant, H.S.J., Houck, A.A., Labaziewicz, J., Chuang, I.L.: Phys. Rev. Lett. 96, 017205 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yong-Chen Xiong
    • 1
  • Shi-Jun Luo
    • 1
  • Jun-Tao Yang
    • 1
  • Hai-Ming Huang
    • 1
  1. 1.School of ScienceHubei University of Automotive TechnologyHubeiPeople’s Republic of China

Personalised recommendations