Monte Carlo Study of the Magnetic Properties in a Fullerene-Like Structure: X 20, X 60, or X 70

Original Paper


The purpose of this paper is to study the magnetic properties of a fullerene-like structure geometry X 20, X 60, and X 70 where the symbol X can be assigned to any magnetic atom. Such structures are formed by atoms with spin σ = 1/2. Using the Monte Carlo computation, the thermal behavior of the magnetizations and susceptibilities of such systems in the ferromagnetic case are studied. We find that the critical temperature increases non-linearly when increasing the number of atoms in the studied system. Otherwise, the coercive field increases linearly when the number of atoms in the structure increases.


Fullerene Magnetic properties Monte Carlo Magnetic field Susceptibilities 


  1. 1.
    Takeda, K., Shiraishi, K.: Phys. Rev. B 68(50), 14916 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, Y., et al.: Nature 438, 201 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Suzuki, T., Yokomizo, Y.: Phys. E 42, 481 (2010)CrossRefGoogle Scholar
  4. 4.
    Novoselov, K.S., et al.: Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Katsnelson, M.I.: Phys. Rev. B. 76, 073411 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Behera, H., Mukhopadhyay, G.: AIP Conf. Proc. 1313, 152 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Geim, A.K., Novoselov, K.S.: Nat. Mater 6, 183 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Drillon, M., Coronado, E., Beltran, D., Georges, R.: J. Chem. Phys. 79, 449 (1983)Google Scholar
  10. 10.
    Kechrakos, D., Trohidou, K.N.: J. Magn. Magn. Mater 226, 261 (2004)Google Scholar
  11. 11.
    Skumryev, V., Stoyanov, S., Zhang, Y., Hadjipanayis, G.C., Givord, D., Nogues, J.: Nature 423, 850 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Bansmann, J., Baker, S.H., Binns, C., Blackman, J.A., Bucher, J.-P., DorantesDavila, J., Dupuis, V., Favre, L., Kechrakos, D., Kleibert, A., Meiwes-Broer, K.-H., Pastor, G.M., Perez, A., Toulemonde, O., Trohidou, K.N., Tuaillon, J., Xie, Y.: Surf. Sci. Rep. 56, 189 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Frandsen, C., Ostenfeld, C.W., Xu, M., Jacobsen, C.S., Keller, L., Lefmann, K., Morup, S.: Phys. Rev. B 70, 134416 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Kachkachi, H.: J. Magn. Magn. Mater 316, 248 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Nogues, J., Sort, J., Langlais, V., Doppiu, S., Dieny, B., Munoz, J.S., Surinach, S., Baro, M.D., Stoyanov, S., Zhang, Y.: Int. J. Nanotechnol. 2, 23 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Grimsditch, M., Loubeyre, P., Polian, A.: Phys. Rev. B 33, 7192 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    Rosensweig, R.E.: Ferrohydrodynamics. Dover, New York (1997)Google Scholar
  18. 18.
    Styer, D.F., Phani, M.K., Lebowitz, J.L.: Phys. Rev. B 34, 3361 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    Scott, H.L.: Phys. Rev. A 37, 263 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    Barker, J.A.: Phys. Rev. Lett 57, 230 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    Onyszkiewicz, Z.: Phys. Lett. A 68(2939), 113 (1978)ADSCrossRefGoogle Scholar
  22. 22.
    Zhang, X., Mizukami, S., Ma, Q., Kubota, T., Oogane, M., Naganuma, H., Ando, Y., Miyazaki, T.: J. Appl. Phys. 115, 172608 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Gobbi, M., Golmar, F., Llopis, R., Casanova, F., Hueso, L.E.: Adv. Mater 23, 1609 (2011)CrossRefGoogle Scholar
  24. 24.
    Tran, T., Le, T.Q., Sanderink, J.G., van der Wiel, W.G., de Jong, M.P.: Adv. Funct. Mater 22, 1180 (2012)CrossRefGoogle Scholar
  25. 25.
    Zhang, X., Mizukami, S., Kubota, T., Ma, Q., Oogane, M., Naganuma, H., Ando, Y., Miyazaki, T.: Nat. Commun. 4, 1392 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Yoshida, K., Hamada, I., Sakata, S., Umeno, A., Tsukada, M., Hirakawa, K.: Nano Lett. 13, 481 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Guldi, D.M., Illescas, B.M., Atienza, C.M., Wielopolskia, M., Martin, N.: Chem. Soc. Rev. 38 (2939), 1587 (2009)CrossRefGoogle Scholar
  28. 28.
    Pai, W.W., Hsu, C.L., Lin, M.C., Lin, K.C., Tang, T.B.: Phys. Rev. B69, 125405 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Stengel, M., Vita, A.D., Baldereschi, A.: Phys. Rev. Lett. 91, 166101 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Yuksel, Y., Aydiner, E., Polat, H.: J. Magn. Magn. Mater 323, 3168 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Eftaxias, E., Trohidou, K.N.: Phys. Rev. B 71, 134406 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Jiang, L., Zhang, J., Chen, Z., Feng, Q., Huang, Z.: Physica B 405, 420 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Iglesias, O., Battle, X., Labarta, A.: J. Nanosci. Nanotechnol. 8, 2761 (2008)Google Scholar
  34. 34.
    Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statical Physics. Clarendon Press, Oxford (1999)MATHGoogle Scholar
  35. 35.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculté des Sciences, Laboratoire de Magnétisme et de la Physique des Hautes Energies (LMPHE-URAC12)Mohammed V University of RabatRabatMorocco
  2. 2.Département de MathématiquesMohammed V University of RabatRabatMorocco

Personalised recommendations