Advertisement

Structural, Electronic and Magnetic Properties of NaKZ (Z = N, P, As, and Sb) Half-Heusler Compounds: a First-Principles study

Original Paper

Abstract

The electronic and magnetic properties of the half-Heusler compounds of NaKZ (Z = N, P, As, and Sb) are investigated on the basis of density functional theory. The spin-polarized calculations indicate that these materials are half-metallic ferromagnets with an integer magnetic moment of 1 μ B at their equilibrium lattice constants. The mechanism that leads to half-metallicity in these materials is also investigated. It is found that these compounds are half-metallic ferromagnets on a wide range of lattice constants, and as a result, they could be used in the spintronic devices that contain heterojunctions of half-metal/semiconductors. The Curie temperatures of NaKN, NaKP, NaKAs, and NaKSb are estimated to be 526.3, 494.7, 475.9, and 358.1 K in the mean field approximation, respectively.

Keywords

Half-metallic ferromagnets Half-Heusler alloys Electronic structure Magnetic properties Density functional theory 

References

  1. 1.
    Nourbakhsh, Z.: The electronic and magnetic properties of half-metal type MnFexCo2−x Si (with x =0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, and 2) alloys. J. Supercond. Nov. Magn. 24, 887–893 (2011)Google Scholar
  2. 2.
    Benabboun, R., Mesri, D., Tadjer, A., Lakdja, A.: Half-metallicity ferromagnetism in half-Heusler XCaZ (X = Li, Na; Z = B, C) compounds: an ab initio calculation. J. Supercond. Nov. Magn. 28, 2881–2890 (2015)CrossRefGoogle Scholar
  3. 3.
    Atulasimha, J., Bandyopadhyay, S.: Nanomagnetic and spintronic devices for energy-efficient memory and computing. Wiley (2016)Google Scholar
  4. 4.
    Bsiesy, A.: Spin injection into semiconductors: towards a semiconductor-based spintronic device. C. R. Phys. 6, 1022–1026 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Ribeiro, R.A.P., Camilo, A., De Lazaro, S.R.: Electronic structure and magnetism of new ilmenite compounds for spintronic devices: FeBO3 (B = Ti, Hf, Zr, Si, Ge, Sn). J. Magn. Magn. Mater 394, 463–469 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Rostami, M., Afshari, M., Moradi, M.: Bulk and surface half-metallicity of CsS in CsCl structure: a density functional theory study. J. Alloys Compd. 575, 301–308 (2013)CrossRefGoogle Scholar
  7. 7.
    Rozale, H., Amar, A., Lakdja, A., Moukadem, A., Chahed, A.: Half-metallicity in the half-Heusler RbSrC, RbSrSi and RbSrGe compounds. J. Magn. Magn. Mater 336, 83–87 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Umamaheswari, R., Vijayalakshmi, D., Yogeswari, M., Kalpana, G.: Half-metallic ferromagnetism in full-Heusler compounds ACaX2 (A = K and Rb; X = N and O). AIP. Conf. Proc. 1591, 1506 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Saha, S.N., Panda, J., Nath, T.K.: Structural and magnetization behavior of highly spin polarized Co2CrAl full Heusler alloy. AIP Conf. Proc. 1591, 1395 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Birsan, A.: Electronic structure and magnetism of new scandium-based full Heusler compounds: Sc2CoZ (Z =Si, Ge, Sn). J. Alloys. Compd. 598, 230–235 (2014)CrossRefGoogle Scholar
  11. 11.
    Gao, Y.C., Wang, X.T.: d 0 half-metallicity of the bulk and surface (001) of full-Heusler alloy RbSrN2: a first-principle study. J. Mang. Mang. Mat. 385, 394–401 (2015)Google Scholar
  12. 12.
    Birsan, A., Kuncser, V.: First principle investigations of the structural, electronic and magnetic properties of predicted new zirconium based full-Heusler compounds, Zr2MnZ (Z =Al, Ga and In). J. Mang. Mang. Mat. 406, 282–288 (2016)Google Scholar
  13. 13.
    Asfour, I., Rached, H., Benalia, S., Rached, D.: Investigation of electronic structure, magnetic properties and thermal properties of the new half-metallic ferromagnetic full-Heusler alloys Cr2GdSi1−xGex: an ab-initio study. J. Alloys. Compd. 676, 440–451 (2016)CrossRefGoogle Scholar
  14. 14.
    Bagverdi, F., Ahmadian, F.: First-principles study of half-metallic ferromagnetism of the full-Heusler compounds RbSrX2 (X = C, N, and O). J. Supercond. Nov. Magn. 28, 2773–2781 (2015)CrossRefGoogle Scholar
  15. 15.
    Rai, D.P., Thapa, R.K.: Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound. J. Alloys. Compd. 612, 355–360 (2014)CrossRefGoogle Scholar
  16. 16.
    Jalilian, J.: Comment on ‘Study of electronic, magnetic, optical and elastic properties of Cu2MnAl a gapless full Heusler compound’. J. Alloys. Compd. 626, 277–279 (2015)CrossRefGoogle Scholar
  17. 17.
    Mohankumar, R., Ramasubramanian, S., Rajagopalan, M., Manivel Raja, M., Kamat, S.V., Kumar, J.: Effect of Fe substitution on the electronic structure, magnetic and thermoelectric properties of Co2FeSi full Heusler alloy: a first principle study. Comp. Mat. Sci. 109, 34–40 (2015)CrossRefGoogle Scholar
  18. 18.
    Huang, W., Wang, X., Chen, X., Lu, W., Damewood, L., Fong, C.Y.: Structural and electronic properties of half-Heusler alloys PtXBi (with X =Mn, Fe, Co and Ni) calculated from first principles. J. Mang. Mang. Mat. 377, 252–258 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Lakdja, A., Rozale, H., Chahed, A., Benhelal, O.: Ferromagnetism in the half-Heusler XCsBa compounds from first-principles calculations (X =C, Si, and Ge). J. Alloys. Compd. 564, 8–12 (2015)CrossRefGoogle Scholar
  20. 20.
    Behbahani, M.A., Moradi, M., Rostami, M., Davatolhagh, S.: First principle study of structural, electronic and magnetic properties of half-Heusler IrCrZ (Z =Ge, As, Sn and Sb) compounds. J. Phys. Chem. Solids 92, 85–93 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Umamaheswari, R., Vijayalakshimi, D., Kalpana, G.: First-principles calculation of structural, electronic and magnetic properties of half-Heusler LiCaC and NaCaC compounds. Phys. B 448, 256–259 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Jalilian, J., Motiepour, P.: Comment on “Structural, elastic, electronic, magnetic and optical properties of RbSrX (C, SI, Ge) half-Heusler compounds”. J. Mang. Mang. Mat. 396, 219–221 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Watts, S.M., Wirth, S., Von Molnar, S., Barry, A., Coey, J.M.D.: Evidence for two-band magnetotransport in half-metallic chromium dioxide. Phys. Rev. B 61, 9621–9628 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Moradi, M., Rostami, M., Afshari, M.: Half-metallic ferromagnetism in wurtzite and rocksalt TiTe: a density functional theory study. Comp. Matter. Sci. 69, 278–283 (2013)CrossRefGoogle Scholar
  25. 25.
    Moradi, M., Rostami, M., Afshari, M.: Half-metallic ferromagnetism in wurtzite MS (M = Li, Na, and K). Can. J. Phys. 90, 531–536 (2012)CrossRefGoogle Scholar
  26. 26.
    Belabbas, I., Chen, J., Nouet, G.: Electronic structure of threading dislocations in wurtzite GaN. Phys. Status. Solidi 12, 1123–1128 (2015)CrossRefGoogle Scholar
  27. 27.
    Zhang, C.-W., Yan, S.-S.: Half-metallic ferromagnetism in wurtzite MC (M =Ca, Sr, Ba and Mg). Solid State Commun. 149, 387–392 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Li, J., Li, Y., Dai, X., Liu, H., Yu, X.: Ab initio investigation of half-metal state in zinc-blende MnSn and MnC. Physica B 403, 2473–2476 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Kim, T.W., Jeon, H.C., Kang, T.W., Lee, H.S., Lee, J.Y., Jin, S.: Microstructural and magnetic properties of zinc-blende MnAs films with half metallic characteristics grown on GaAs (100) substrates. Appl. Phys. Lett. 021915, 88 (2006)Google Scholar
  30. 30.
    Deng, J.J., Zhao, J.H., Bi, J.F., Niu, Z.C., Yang, F.H., Wu, X.G., Zheng, H.Z.: Growth of thicker zinc-blende CrSb layers by using (In,Ga)As buffer layers. Appl. Phys. Lett. 99, 093902 (2006)Google Scholar
  31. 31.
    Akinaga, H., Manago, T., Shairai, M.: Material design of half-metallic zinc-blende CrAs and the synthesis by molecular-beam epitaxy. Jpn. J. Appl. Phys. 39, L1118–L1120 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Zhao, J.H., Matsukura, F., Takamura, K., Abe, E., Chiba, D., Ohno, H.: Room-temperature ferromagnetism in zincblende CrSb grown by molecular-beam epitaxy. Appl. Phys. Lett. 79, 2776 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Lakdja, A., Rozale, H., Sayede, A., Chahed, A.: Origin of ferromagnetism in the half-Heusler XRbCs compounds (X =N, P and As). J. Magn. Magn. Mat. 354, 235–238 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Huang, W., Wang, X., Chen, X., Lu, W., Damewood, L., Fong, C.Y.: Structural and electronic properties of half-Heusler alloy PdMnBi calculated from first principles. Mat. Chem. Phys. 148, 32–38 (2014)CrossRefGoogle Scholar
  35. 35.
    Gao, G.Y., Yao, K.L., Song, M.H., Liu, Z.L.: Half-metallic ferromagnetism in rocksalt and zinc-blende MS (M =Li, Na and K): a first-principles study. J. Mang. Mang. Mat. 323, 2652–2657 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Galanakis, I., Özdoğan, K., Şaşoğlu, E., Aktaş, B.: Ab initio design of half-metallic fully compensated ferrimagnets: the case of Cr2MnZ (Z =P, As, Sb, and Bi). Phys. Rev. B 75, 172405 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    Giannozzi, P., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 21(19 pp), 395502 (2009)Google Scholar
  39. 39.
    Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244–247 (1944)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Sato, K., Dederichs, P.H., Katayama-Yoshida, H., Kudrnovsky, J.: Exchange interactions in diluted magnetic semiconductors. J. Phys: Condens. Matter. 16, S5491–S5497 (2004)ADSGoogle Scholar
  41. 41.
    Konamota, T., Ido, T.: Effect of pressure on curie temperatures of calcogenide spinels CuCr2 X 4 (X = S, Se and Te). J. Phys. Soc. Jpn. 29, 332–335 (1970)ADSCrossRefGoogle Scholar
  42. 42.
    Wei, X.P., Chu, Y.D., Sun, X.W., Deng, J.B., Xing, Y.Z.: Stability, electronic, magnetic and pressure effect of half-Heusler alloys CNaCa and SiNaCa: a first-principles study. Superlattice Microst. 74, 70–77 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Maryam Safavi
    • 1
  • Mahmood Moradi
    • 1
    • 2
  • Mohammad Rostami
    • 1
  1. 1.Physics Department, College of SciencesShiraz UniversityShirazIran
  2. 2.Institute of NanotechnologyShiraz UniversityShirazIran

Personalised recommendations