Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 4, pp 1061–1066 | Cite as

The Interface Effect on the High-Frequency Properties of (Fe45Co45B10/ZnO) n Multilayers

  • Xueyun Zhou
  • Cuiling Hou
  • Dongsheng Yao
  • Liling Zhou
Original Paper

Abstract

The larger \((\mu _{\mathrm {s}} - 1)f_{\mathrm {r}}^{2}\) in the [Fe 45Co 45 B 10/ZnO] n multilayers than that in single-layer films was found. Large Acher’s limit resulted from the interface magnetic anisotropy of Fe 45Co 45 B 10/ZnO, and the effect of interface magnetic anisotropy increases with increasing the number (n) of magnetic layers. With increasing n, μ s decreases, H k increases, and f r of the multilayer increases from 2.7 to 6 GHz, which greatly broadens the working frequency range. The damping coefficient also increases with increasing n, so the magnetic loss increases with n, and it is introduced by the dispersion of the spins at the interface.

Keywords

Magnetic materials Interface Multilayer Sputtering Magnetic properties 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 50901050 and 51201083. This work was also supported by the Natural Science Foundation of Jiangxi Province (20161BAB206104) and the Science and Technology Foundation of Jiangxi Educational Committee (GJJ151070).

References

  1. 1.
    Russat, J., Suran, G., Ouahmane, H., Rivoire, M., Sztern, J.: J. Appl. Phys. 73(3), 1 (1993)CrossRefGoogle Scholar
  2. 2.
    Jin, S., Zhu, W., van Dover, R.B., Tiefel, T.H., Korenivski, V.: Appl. Phys. Lett. 70, 3161 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Bloemen, PJH, Rulkens, B.: J. Appl. Phys. 84, 6778 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Seemann, K., Leiste, H., Klever, C.: J. Magn. Magn. Mater. 322, 2979 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Iakubov, I.T., Lagarkov, A.N., Maklakov, S.A., Osipov, A.V., Rozanov, K.N., Ryzhikov, I.A., Samsonova, V.V., Sboychakov, A.O.: J. Magn. Magn. Mater. 321, 726 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Wang, P.S., Zhang, H.Q., Divan, R., Hoffmann, A.: IEEE Trans. Magn. 45, 71 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Gloanec, M., Dubourg, S., Acher, O.: Phys. Rev. B 85, 094433 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Dastagir, T., Xu, W., Sinha, S., Wu, H., Cao, Y., Yu, H.B.: Appl. Phys. Lett. 97, 162506 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Yang, Y., Liu, B.L., Tang, D.M., Zhang, B.S., Lu, M., Lu, H.X.: J. Appl. Phys. 108, 073902 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Brosseau, C., Youssef, J.B., Talbot, P., Konn, A.-M.: J. Appl. Phys. 93, 9243 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Fan, X., Xue, D., Lin, M., Zhang, Z., Guo, D., Jiang, C., Wei, J.: Appl. Phys. Lett. 92, 222505 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Chai, G., Yang, Y., Zhu, J., Lin, M., Sui, W., Guo, D., Li, X., Xue, D.: Appl. Phys. Lett. 96, 012505 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Lopusnik, R., Nibarger, J.P., Silva, T.J., Celinski, Z.: Appl. Phys. Lett. 83, 96 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Schneider, M.L., Kos, A.B., Silva, T.J.: Appl. Phys. Lett. 86, 202503 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Neudert, A., Mccord, J., Schäfer, R., Schultz, L.: J. Appl. Phys. 95, 6595 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Gilbert, T.L.: IEEE Trans. Magn. 40, 3443 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Snoek, J.L.: Physica (Amsterdam) 14, 207 (1948)ADSCrossRefGoogle Scholar
  18. 18.
    Acher, O., Adenot, A.L.: Phys. Rev. B 62, 11324 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Kittel, C.: Phys. Rev. 73, 155 (1948)ADSCrossRefGoogle Scholar
  20. 20.
    Zuo, H.P., Ge, S.H., Wang, Z.K., Xiao, Y.H., Yao, D.S.: IEEE Trans. Magn. 44, 3111 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Phuoc, N.N., Xu, F., Ong, C.K.: J. Appl. Phys. 105, 113926 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Ikeda, K., Kobayashi, K., Fujimoto, M.: J. Appl. Phys. 92, 5395 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Pan, Du, H.: J. Appl. Phys. 93, 5498 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Ha, N.D., Park, B.C., Kim, H.B., Kim, C.G., Kim, C.O.: J. Magn. Magn. Mater. 286, 267 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Chai, G., Xue, D., Fan, X., Li, X., Guo, D.: Appl. Phys. Lett. 93, 152516 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Bekker, V., Seemann, K., Leiste, H.: J. Magn. Magn. Mater. 270, 327 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Phuoc, N.N., Xu, F., Ong, C.K.: J. Appl. Phys. 105, 113926 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Phuoc, N.N., Ong, C.K.: Physica B. 406, 3514 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    McMicheal, R.D., Twisselmann, D.J., Kunz, A.: Phys. Rev. Lett. 90, 227601 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    McMicheal, R.D: J. Appl. Phys. 103, 07B114 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xueyun Zhou
    • 1
  • Cuiling Hou
    • 1
  • Dongsheng Yao
    • 2
  • Liling Zhou
    • 1
  1. 1.School of Science and Key Laboratory for Solid State Microstructure of Jiangxi ProvinceJiujiang UniversityJiujiangPeople’s Republic of China
  2. 2.Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of ScienceTianjin UniversityTianjinChina

Personalised recommendations