Advertisement

Microstructure and Improved J cH Characteristic of Sr2Nb2O7-Doped Y0.5Gd0.5Ba2Cu3O7−x Thin Film Prepared by Pulsed Laser Deposition

  • LinFei Liu
  • Xiang Wu
  • YanJie Yao
  • BinBin Wang
  • SaiDan Lu
  • YiJie Li
Original Paper

Abstract

Sr2Nb2O7 (SNO)-doped Y0.5Gd0.5Ba2Cu3O7−x (YGBCO) and pure YGBCO thin films with pure c-axis orientation were prepared by pulsed laser deposition. Compared with a pure YGBCO film, T c and critical current density (J c) (77 K, 0 T) of the SNO-doped film decreased from 91.9 to 88.7 K and from 4.2 to 2.5 MA/cm2, respectively. SNO-doped YGBCO film exhibited significantly enhanced J c in a magnetic field up to 9 T at 4.2 K and up to 7 T at 65 K for B//C, indicating that the SNO-doped YGBCO film possessed more effective flux pinning centers, which were stacking faults, c-axis defects, and inclined defects identified by transmission electron microscopy analysis.

Keywords

SNO High-temperature superconductor Laser deposition Thin films Defects 

Notes

Acknowledgments

This work was supported by the Ministry of Science and Technology of the People’s Republic of China ITER project (grant number 2011GB113004), the 863 project (grant number 2014AA032702), the Shanghai Commission of Science and Technology (grant numbers 11DZ1100402, 13DZ0500100, and 16521108302), and the Natural Science Foundation of China (grant numbers 11204174 and 51372150).

References

  1. 1.
    Dechoux, N., Jiménez, C., Chaudouët, P., Rapenne, L., Sarigiannidou, E., Robaut, F., Petit, S., Garaudée, S., Porcar, L., Soubeyroux, J.L., Odier, P., Bruzek, C.E., Decroux, M.: Supercond. Sci. Technol. 25, 125008 (2012)CrossRefGoogle Scholar
  2. 2.
    Sharma, R.G.: Superconductivity: Basics and Applications to Magnets. Springer, Switzerland (2015)CrossRefGoogle Scholar
  3. 3.
    Zhang, H.L., Ding, F.Z., Gu, H.W., et al.: J. Supercond. Nov. Magn. 29, 1227 (2016)CrossRefGoogle Scholar
  4. 4.
    Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., List, F.A.: Science 274, 755 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Goyal, A., Norton, D.P., Kroeger, D.M., Christen, D.K., Paranthaman, M., Specht, E.D., Budai, J.D., He, Q., Saffian, B., List, F.A., Lee, D.F., Hatfield, E., Martin, P.M., Klabunde, C.E., Mathis, J., Park, C.: J. Mater. Res. 12, 2924–40 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Iijima, Y., Tanabe, N., Kohno, O., Ikeno, Y.: Appl. Phys. Lett. 60, 769 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Groves, J.R., Arendt, P.N., Kung, H., Foltyn, S.R., DePaula, R.F., Emmert, L.A., Storer, J.G.: IEEE Trans. Appl. Supercond. 11, 2822–5 (2001)CrossRefGoogle Scholar
  8. 8.
    Usokin, A., Kirchhoff, L., Knoke, J., Prause, B., Rutt, A., Selskij, V., Farrell, D.E.: IEEE Trans. Appl. Supercond. 17, 3235–8 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Malozemoff, A.P., Fleshler, S., Rupich, M., Thieme, C., Li, X., Zhang, W., Otto, A., Maguire, J., Folts, D., Yuan, J., Kraemer , H-P, Schmidt, W., Wohlfart, M., Neumueller, H.-W.: Supercond. Sci. Technol. 21, 034005 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Selvamanickam, V., Galinski, G.B., Carota, G., DeFrank, J., Trautwein, C., Haldar, P., Balachandran, U., Chudzik, M., Coulter, J.Y., Arendt, P.N., Groves, J.R., DePaula, R.F., Newnam, B.E., Peterson, D.E.: Physica C 333, 155–62 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Igarashi, M., Kakimoto, K., Hanyu, S., Tashita, C., Hayashida, T., Hanada, Y., Fujita, S., Morita, K., Nakamura, N., Sutoh, Y., Kutami, H., Iijima, Y., Saitoh, T.: J. Phys.: Conf. Ser. 234, 022016 (2010)Google Scholar
  12. 12.
    Matias, V., Rowley, J., Coulter, Y., Maiorov, B., Holesinger, T., Yung, C., Glyantsev, V., Moeckly, B.: Supercond. Sci. Technol. 23, 0140018 (2010)CrossRefGoogle Scholar
  13. 13.
    Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., Sumption, M.: Nature 430, 867–70 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Crisan, A., Fujiwara, S., Nie, J.C., Sundaresan, A., Ihara, H.: Appl. Phys. Lett. 79, 4547 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Larbalestier, D.C., et al.: Nat. Mater. 13, 375 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    MacManus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Civale, L., Maiorov, B., Hawley, M.E., Maley, M.P., Peterson, D.E.: Nat. Mater. 3, 439–43 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, H., Ding, F., Gu, H., Dong, Z., Qu, F.: J. Alloys Compd. 664, 5–10 (2016)CrossRefGoogle Scholar
  18. 18.
    Teranishi, R., Yasunaga, S., Kai, H., Yamada, K., Mukaida, M., Mori, N., Fujiyoshi, T., Ichinose, A., Horii, S., Matsumoto, K., Yoshida, Y., Kita, R., Awaji, S.: Physica C 468, 1522–6 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Tsuruta, A., Yoshida, Y., Ichino, Y., Ichinose, A., Matsumoto, K., Awaji, S.: Supercond. Sci. Technol. 27, 065001 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Liou, Y.-C., Tsai, W.-C., Yu, J.-Y., Tsai, H.-C.: Ceram. Int. 41, 7036–7041 (2015)CrossRefGoogle Scholar
  21. 21.
    Liu, L., Li, Y., Wu, X., Yao, Y., Wang, M., Wang, B.: Appl. Surf. Sci. 388, 77-81 (2016)Google Scholar
  22. 22.
    Xiao, G., Liu, L., Xu, D., Wu, X., Luo, Q., Li, Y.: Surf. Coat. Technol. 252, 108–112 (2014)CrossRefGoogle Scholar
  23. 23.
    Wiesinger, H.P., Sauerzopf, F.M., Weber, H.W.: Phys. C. Supercond. 203, 121–128 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • LinFei Liu
    • 1
  • Xiang Wu
    • 1
  • YanJie Yao
    • 1
  • BinBin Wang
    • 1
  • SaiDan Lu
    • 1
  • YiJie Li
    • 1
  1. 1.Key Laboratory of Artificial Structures and Quantum Control, Ministry of Education, Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations