Appearance of Superconductivity at 15.9 K in Layered V2AlN

  • Jie Li
  • Xiaopeng Cui
  • Yuan Jin
  • Xunqing Yin
  • Shixun Cao
  • Zhenjie Feng
  • Jincang Zhang


A bulk polycrystalline sample with the nominal compositions represented by V2AlN1−δ was synthesized by a two-step solid-state reaction. The structural characterization has been done via X-ray diffraction, followed by Rietveld refinements, which revealed that the layered V2AlN is crystalized in cubic Fm3m space group with lattice parameters a = b = c = 6.127 Å. Both DC resistivity and magnetization measurements confirmed that V2AlN is a bulk superconductor with superconducting transition temperature (T c ) of 15.9 K.


Superconductivity Superconducting transition temperature Magnetization Bulk superconductivity 



This work is supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 11574194, 51372149), Shanghai Institute of Materials Genome (Project No. 14DZ2261200) from the Shanghai Municipal Science and Technology Commission.


  1. 1.
    Yamanaka, S., Hotehama, K.-i., Kawaji, H.: Superconductivity at 25.5 K in electron-doped layered hafnium nitride. Nature 392, 580–582 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H.: Iron-based layered superconductor La [O1-x F x] FeAs (x = 0.05-0.12) with T c = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008)CrossRefGoogle Scholar
  3. 3.
    Hsu, F.-C., Luo, J.-Y., Yeh, K.-W., Chen, T.-K., Huang, T.-W., Wu, P.M., Lee, Y.-C., Huang, Y.-L., Chu, Y.-Y., Yan, D.-C.: Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. 105, 14262–14264 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Haldolaarachchige, N., Kushwaha, S., Gibson, Q., Cava, R.: Superconducting properties of BaBi3. Supercond. Sci. Technol. 27, 105001 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    He, B., Dong, C., Yang, L., Chen, X., Ge, L., Mu, L., Shi, Y.: CuNNi3: A new nitride superconductor with antiperovskite structure. Supercond. Sci. Technol. 26, 125015 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Zhan, J., Li, L., Wang, T., Wang, J., Chen, Y., Zhang, L., Shen, J., Li, P., Li, Y.: Superconductivity in Ca0.5La0.5FBiSe2. J. Supercond. Nov. Magn. 1–5 (2016)Google Scholar
  7. 7.
    Goyal, R., Gupta, G., Srivastava, A.K., Awana, V.P.S.: Superconductivity at 5.5 K in Nb2PdSe5 compound. J. Supercond. Nov. Magn. 1–6 (2016)Google Scholar
  8. 8.
    Nowotny, V.H.: Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem. 5, 27–70 (1971)CrossRefGoogle Scholar
  9. 9.
    Bortolozo, A., Sant’Anna, O., dos Santos, C., Machado, A.: Superconductivity in the hexagonal-layered nanolaminates Ti 2 InC compound. Solid State Commun. 144, 419–421 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Hadi, M., Roknuzzaman, M., Parvin, F., Naqib, S., Islam, A., Aftabuzzaman, M.: New MAX phase superconductor Ti 2 GeC: A first-principles study. J. Sci. Res. 6, 11–27 (2013)CrossRefGoogle Scholar
  11. 11.
    Eklund, P., Beckers, M., Jansson, U., Högberg, H., Hultman, L.: The M n + 1 AX n phases: Materials science and thin-film processing. Thin Solid Films 518, 1851–1878 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Toth, L.: High superconducting transition temperatures in the molybdenum carbide family of compounds. J. Less-Common Met. 13, 129–131 (1967)CrossRefGoogle Scholar
  13. 13.
    Sakamaki, K., Wada, H., Nozaki, H., Ōnuki, Y., Kawai, M.: Carbosulfide superconductor. Solid State Commun. 112, 323–327 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Bortolozo, A., Sant’Anna, O., Da Luz, M., Dos Santos, C., Pereira, A., Trentin, K., Machado, A.: Superconductivity in the Nb 2 SnC compound. Solid State Commun. 139, 57–59 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Lofland, S., Hettinger, J., Meehan, T., Bryan, A., Finkel, P., Gupta, S., Barsoum, M., Hug, G.: Electron-phonon coupling in M n + 1 A X n-phase carbides. Phys. Rev. B 74, 174501 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Bortolozo, A., Fisk, Z., Sant’Anna, O., Dos Santos, C., Machado, A.: Superconductivity in Nb 2 InC. Phys. C Supercond. 469, 256–258 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Bortolozo, A., Serrano, G., Serquis, A., Rodrigues, D., Dos Santos, C., Fisk, Z., Machado, A.: Superconductivity at 7.3 K in Ti 2 InN. Solid State Commun. 150, 1364–1366 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Bortolozo, A., Sant’Anna, O., Dos Santos, C., Machado, A.: Superconductivity at 9.5 K in the Ti2GeC compound. Mater. Sci. Pol. 30, 92–97 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Höglund, C., Beckers, M., Schell, N., Borany, J.v., Birch, J., Hultman, L.: Topotaxial growth of Ti2AlN by solid state reaction in AlN/Ti(0001) multilayer thin films. Appl. Phys. Lett. 90, 174106 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Baehtz, C., Beckers, M., Eriksson, F.: Experiment title: In-situ x-ray scattering during formation of MAX phase (V, Cr) 2AlN thin films by reactive co-sputtring and solid-state reaction (2009)Google Scholar
  21. 21.
    Rodriguez-Carvajal, J.: FULLPROF: a program for Rietveld refinement and pattern matching analysis. In: Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France:[sn] (1990)Google Scholar
  22. 22.
    Cui, X., Feng, Z., Jin, Y., Cao, Y., Deng, D., Chu, H., Cao, S., Dong, C., Zhang, J.: AutoFP: A GUI for highly automated Rietveld refinement using an expert system algorithm based on FullProf. J. Appl. Crystallogr. 48, 1581–1586 (2015)CrossRefGoogle Scholar
  23. 23.
    Webster, P.J.: Heusler alloys. Contemp. Phys. 10, 559–577 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    Christensen, A.N., Lebech, B.: The structure of β-vanadium nitride. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 35, 2677–2678 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Materials Genome Institute and Department of PhysicsShanghai UniversityShanghaiChina

Personalised recommendations