Advertisement

Half-Metallicity of the Fe-Based Single Atomic Chains in CoFeTiAl Quaternary Semiconductor

  • J. T. Du
  • L. F. Feng
  • X. T. Wang
  • J. J. Liu
  • Z. Qin
  • J. T. Yang
  • L. Y. Wang
Original Paper
  • 128 Downloads

Abstract

In this work, the Fe-based single atomic chains are designed in the semiconductive CoFeTiAl quaternary Heusler matrix by substituting Ti, Al, or Ti-Al with Fe in [001] crystallographic direction. We have investigated the electronic structures and magnetic characteristics of the Fe-based supercells by using the first-principles calculations. Our results show that all the three kinds of single atomic chains Fe-Al, Fe-Ti, and Fe-Fe atomic chains show a half-metallicity with 100 % spin polarization. A conductive nanopillar is formed and dilutedly distributed in CoFeTiAl matrix. The width of the nanopillar is about half of the lattice parameter, and the length of it will be adjustable. It would be an ideal method to design the new direct-current-magnetic memory device.

Keywords

Magnetic memory Supercell Spin-polarized nanopillar Half-metallicity 

Notes

Acknowledgments

This work was supported in part by the National Nature Science Foundations of China under grant nos. 11204209, 60876035, and 61334005, in part by the Nature Science Foundations of Tianjin City (grant no. 13JCZDJC32800 and 6JCYBJC17200), and in part by the Seed Foundation of Tianjin University.

References

  1. 1.
    Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    Tsoi, M., Jansen, A.G.M., Bass, J., Chiang, W.C., Seck, M., Tsoi, V., Wyder, P.: Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Sun, J.Z.: Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Bussman, K., Prinz, G.A., Cheng, S.F., Wang, D.: Switching of vertical giant magnetoresistance devices by current through the device. Appl. Phys. Lett. 75, 2476 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Albert, F.J., Katine, J.A., Buhrman, R.A.: Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett. 77, 3809 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Myers, E.B., Ralph, D.C., Katine, J.A., Louie, R.N., Buhrman, R.A.: Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999)CrossRefGoogle Scholar
  7. 7.
    Katine, J.A., Albert, F.J., Buhrman, R.A., Myers, E.B., Ralph, D.C.: reversal, Current-driven magnetization and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Wegrowe, J.E., Hoffer, X., Guittienne, P.h., Fábián, A., Gravier, L., Wade, T., Ansermet, J.P.h.: Spin-polarized current induced magnetization switch: is the modulus of the magnetic layer conserved? (invited). Appl. Phys. Lett. 91, 6806 (2002)Google Scholar
  9. 9.
    Yamanouchi, M., Chiba, D., Matsukura, F., Ohno, H.: Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Letters to Nature 428, 539–542 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Han, X.F., Wen, Z.C., Wei, H.X.: Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching (invited). Appl. Phys. Lett. 103, 07E933 (2008)Google Scholar
  11. 11.
    Sabareesan, P., Daniel, M.: Impact of interface anisotropy on spin polarized current driven switching in FePt/Au/FePt nanopillar. J. Magn. Magn. Mater. 324, 4219–4224 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Xu, L., Wang, Y., Wei, D., Ma, Z.S.: Micromagnetic Studies of lateral TMR memory cell driven by spin polarized current or by magnetic field. IEEE Trans. Magn. 49, 4221 (2013)ADSGoogle Scholar
  13. 13.
    Gomonay, H.V.: Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, Z.Y., Sun, Z.Z.: Magnetization stability analysis of the Stoner-Wohlfarth model under a spin-polarizedcurrent with a tilted polarization. Appl. Phys. Lett. 115, 063905 (2014)Google Scholar
  15. 15.
    Guo, Y., Zheng, J., Chi, F.: Switching of current spin polarization by electron-phonon interaction in a quantum dot device. J. Low Temp. Phys. 174, 148–158 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Biswas, A.K., Bandyopadhyay, S., Atulasimha, J.: Acoustically assisted spin-transfer-torque switching of nanomagnets: an energy-efficient hybrid writing scheme for non-volatile memory. Appl. Phys. Lett. 103, 232401 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Pertsev, N.A., Kohlstedt, H.: Magnetoresistive memory with ultralow critical current for magnetization switching. Adv. Funct. Mater. 22, 4696–4703 (2012)CrossRefGoogle Scholar
  18. 18.
    Wang, L.Y., Dai, X.F., Wang, X.T., Li, P.P., Xia, Q.L., Zhang, Y., Cui, Y.T., Liu, G.D.: Single spin channels in Fe-doped CoTiSb semiconductor. Superlattices Microstruct. 83, 261–270 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Katine, J.A., Albert, F.J., Buhrman, R A.: Current-induced realignment of magnetic domains in nanostructured Cu/Co multilayer pillars. Appl. Phys. Lett. 76, 354 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Bazaliy, Y.a.B., Jones, B.A., Zhang, S.C.: Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Phys. Rev. B 57, R3213–R3216 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Weintal, X., Myers, E.B., Piet, W., Brouwer, D.C.: Ralph, Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers. Phys. Rev. B 62, 12317 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717–2744 (2002)ADSGoogle Scholar
  24. 24.
    Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J.: Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 24, 864–875 (1981)ADSCrossRefGoogle Scholar
  25. 25.
    Basit, L., Fecher, G.H., Chadov, S., Balke, B., Felser, C.: Quaternary Heusler compounds without inversion symmetry: CoFe1 + xTi1−xAl and CoMn1 + xV1−xAl. Eur. J. Inorg. Chem., 3950e3954 (2011)Google Scholar
  26. 26.
    Lin, T.T., Dai, X.F., Wang, L.Y., Wang, X.T., Liu, X.F., Cui, Y.T., Liu, G.D.: Anti-site-induced diluted magnetism in semiconductive CoFeTiAl alloy. J. Alloys Compd. 657, 519–525 (2016)CrossRefGoogle Scholar
  27. 27.
    Sato, K., Dederichs, P.H., Katayama-Yoshida, H., Kudrnovsky, J.: Exchange interactions in diluted magnetic semiconductors. J. J Phys: Condens. Matter 16, S5491 (2004)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. T. Du
    • 1
  • L. F. Feng
    • 1
  • X. T. Wang
    • 2
  • J. J. Liu
    • 1
  • Z. Qin
    • 1
  • J. T. Yang
    • 3
  • L. Y. Wang
    • 1
  1. 1.Department of Physics, Faculty of ScienceTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of Material Science and EngineeringHebei University of TechnologyTianjinPeople’s Republic of China
  3. 3.School of ScienceHubei University of Automotive TechnologyShiyanPeople’s Republic of China

Personalised recommendations