Skip to main content
Log in

Half-Metallicity of the Fe-Based Single Atomic Chains in CoFeTiAl Quaternary Semiconductor

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, the Fe-based single atomic chains are designed in the semiconductive CoFeTiAl quaternary Heusler matrix by substituting Ti, Al, or Ti-Al with Fe in [001] crystallographic direction. We have investigated the electronic structures and magnetic characteristics of the Fe-based supercells by using the first-principles calculations. Our results show that all the three kinds of single atomic chains Fe-Al, Fe-Ti, and Fe-Fe atomic chains show a half-metallicity with 100 % spin polarization. A conductive nanopillar is formed and dilutedly distributed in CoFeTiAl matrix. The width of the nanopillar is about half of the lattice parameter, and the length of it will be adjustable. It would be an ideal method to design the new direct-current-magnetic memory device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  ADS  Google Scholar 

  2. Tsoi, M., Jansen, A.G.M., Bass, J., Chiang, W.C., Seck, M., Tsoi, V., Wyder, P.: Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998)

    Article  ADS  Google Scholar 

  3. Sun, J.Z.: Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999)

    Article  ADS  Google Scholar 

  4. Bussman, K., Prinz, G.A., Cheng, S.F., Wang, D.: Switching of vertical giant magnetoresistance devices by current through the device. Appl. Phys. Lett. 75, 2476 (1999)

    Article  ADS  Google Scholar 

  5. Albert, F.J., Katine, J.A., Buhrman, R.A.: Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett. 77, 3809 (2000)

    Article  ADS  Google Scholar 

  6. Myers, E.B., Ralph, D.C., Katine, J.A., Louie, R.N., Buhrman, R.A.: Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999)

    Article  Google Scholar 

  7. Katine, J.A., Albert, F.J., Buhrman, R.A., Myers, E.B., Ralph, D.C.: reversal, Current-driven magnetization and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000)

    Article  ADS  Google Scholar 

  8. Wegrowe, J.E., Hoffer, X., Guittienne, P.h., Fábián, A., Gravier, L., Wade, T., Ansermet, J.P.h.: Spin-polarized current induced magnetization switch: is the modulus of the magnetic layer conserved? (invited). Appl. Phys. Lett. 91, 6806 (2002)

    Google Scholar 

  9. Yamanouchi, M., Chiba, D., Matsukura, F., Ohno, H.: Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Letters to Nature 428, 539–542 (2004)

    Article  ADS  Google Scholar 

  10. Han, X.F., Wen, Z.C., Wei, H.X.: Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching (invited). Appl. Phys. Lett. 103, 07E933 (2008)

    Google Scholar 

  11. Sabareesan, P., Daniel, M.: Impact of interface anisotropy on spin polarized current driven switching in FePt/Au/FePt nanopillar. J. Magn. Magn. Mater. 324, 4219–4224 (2012)

    Article  ADS  Google Scholar 

  12. Xu, L., Wang, Y., Wei, D., Ma, Z.S.: Micromagnetic Studies of lateral TMR memory cell driven by spin polarized current or by magnetic field. IEEE Trans. Magn. 49, 4221 (2013)

    ADS  Google Scholar 

  13. Gomonay, H.V.: Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010)

    Article  ADS  Google Scholar 

  14. Wang, Z.Y., Sun, Z.Z.: Magnetization stability analysis of the Stoner-Wohlfarth model under a spin-polarizedcurrent with a tilted polarization. Appl. Phys. Lett. 115, 063905 (2014)

    Google Scholar 

  15. Guo, Y., Zheng, J., Chi, F.: Switching of current spin polarization by electron-phonon interaction in a quantum dot device. J. Low Temp. Phys. 174, 148–158 (2014)

    Article  ADS  Google Scholar 

  16. Biswas, A.K., Bandyopadhyay, S., Atulasimha, J.: Acoustically assisted spin-transfer-torque switching of nanomagnets: an energy-efficient hybrid writing scheme for non-volatile memory. Appl. Phys. Lett. 103, 232401 (2013)

    Article  ADS  Google Scholar 

  17. Pertsev, N.A., Kohlstedt, H.: Magnetoresistive memory with ultralow critical current for magnetization switching. Adv. Funct. Mater. 22, 4696–4703 (2012)

    Article  Google Scholar 

  18. Wang, L.Y., Dai, X.F., Wang, X.T., Li, P.P., Xia, Q.L., Zhang, Y., Cui, Y.T., Liu, G.D.: Single spin channels in Fe-doped CoTiSb semiconductor. Superlattices Microstruct. 83, 261–270 (2015)

    Article  ADS  Google Scholar 

  19. Katine, J.A., Albert, F.J., Buhrman, R A.: Current-induced realignment of magnetic domains in nanostructured Cu/Co multilayer pillars. Appl. Phys. Lett. 76, 354 (2000)

    Article  ADS  Google Scholar 

  20. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  ADS  Google Scholar 

  21. Bazaliy, Y.a.B., Jones, B.A., Zhang, S.C.: Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Phys. Rev. B 57, R3213–R3216 (1998)

    Article  ADS  Google Scholar 

  22. Weintal, X., Myers, E.B., Piet, W., Brouwer, D.C.: Ralph, Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers. Phys. Rev. B 62, 12317 (2000)

    Article  ADS  Google Scholar 

  23. Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717–2744 (2002)

    ADS  Google Scholar 

  24. Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J.: Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 24, 864–875 (1981)

    Article  ADS  Google Scholar 

  25. Basit, L., Fecher, G.H., Chadov, S., Balke, B., Felser, C.: Quaternary Heusler compounds without inversion symmetry: CoFe1 + x Ti1−x Al and CoMn1 + x V1−x Al. Eur. J. Inorg. Chem., 3950e3954 (2011)

  26. Lin, T.T., Dai, X.F., Wang, L.Y., Wang, X.T., Liu, X.F., Cui, Y.T., Liu, G.D.: Anti-site-induced diluted magnetism in semiconductive CoFeTiAl alloy. J. Alloys Compd. 657, 519–525 (2016)

    Article  Google Scholar 

  27. Sato, K., Dederichs, P.H., Katayama-Yoshida, H., Kudrnovsky, J.: Exchange interactions in diluted magnetic semiconductors. J. J Phys: Condens. Matter 16, S5491 (2004)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Nature Science Foundations of China under grant nos. 11204209, 60876035, and 61334005, in part by the Nature Science Foundations of Tianjin City (grant no. 13JCZDJC32800 and 6JCYBJC17200), and in part by the Seed Foundation of Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Y. Wang.

Additional information

J. T. Du and L. F. Feng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J.T., Feng, L.F., Wang, X.T. et al. Half-Metallicity of the Fe-Based Single Atomic Chains in CoFeTiAl Quaternary Semiconductor. J Supercond Nov Magn 30, 597–602 (2017). https://doi.org/10.1007/s10948-016-3823-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3823-5

Keywords

Navigation