Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 2, pp 379–386 | Cite as

Cooper-like Pairing and Energy Gap Induced by Ion Electronic Polarizability

  • Yizhak Yacoby
  • Yakov Girshberg
Original Paper
  • 115 Downloads

Abstract

We explore the possibility that the ionic electron polarizabilities of the oxygen ions in the cuprates and bismutates and the polarizabilities of As and Se ions in the iron pnictides contribute to charge carrier pairing leading to high Tc superconductivity. Using the fact that the ionic polarization responds to an abrupt change in the electric field is practically instantaneous, we find that charge carriers attract each other in limited regions in the two carrier position space. The attractive potential is used to calculate quantum mechanically the Cooper-like pairing energy and wave function and the gap energy showing they are consistent with pairing and gap energies of high Tc superconductors. Qualitative considerations show that this model may explain the large pairing energy observed in high Tc superconductors, the very short inter-carrier distance, the fact that Tc vanishes at very low and very high doping levels, and the dramatic increase in Tc of a one-unit cell thick FeSe film grown on SrTiO3 substrate.

Keywords

High Tc Superconductivity Polarizability Cuprates Pnictides 

Notes

Acknowledgments

The authors gratefully acknowledge useful discussions with Dror Orgad from the Hebrew University of Jerusalem.

References

  1. 1.
    Bednorz, J.G., Mueller, K.A.: Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B – Cond. Matt. 64(2), 189 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Oya, G.I., Saur, E.J.: Preparation of Nb3Ge films by chemical transport reaction and their critical properties. J. Low Temper. Phys 34, 569 (1979)ADSCrossRefGoogle Scholar
  3. 3.
    Bardeen, J., Cooper, L.N., Schrieffer, J.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Mattheiss, L.F., Gyorgy, E.M., Johnson, D.W. Jr.: Superconductivity above 20 K in the Ba-K-Bi-O system. Phys. Rev. B37, 3745 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    Cava, R.J., Batlogg, B., et al.: Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature 332, 814 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    Hinks, D.G., Dabrowski, B., et al.: Synthesis, structure and superconductivity in the Ba1–xKxBiO3–y system. Nature 333, 836 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    Kamihara, Y., Watanabe, T., et al.: Iron-based layered superconductor La [O1-x F x] FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  8. 8.
    Hyungju, O h, Moon, Jisoo, et al.: Brief review on iron-based superconductors: are there clues for unconventional superconductivity? Progress Supercond. 13, 65 (2011)Google Scholar
  9. 9.
    Müller, K.A.: The unique properties of superconductivity in cuprates. J. Supercond. Novel Magn. 27, 2163 (2014)CrossRefGoogle Scholar
  10. 10.
    Cooper, L.N.: Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189 (1956)ADSCrossRefMATHGoogle Scholar
  11. 11.
    Micnas, R., Ranninger, J., Robaszkiewicz, S.: Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Modern Phys. 62, 113 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Tinkam, M.: Introduction to superconductivity. Mc-Graw Hill (1995)Google Scholar
  13. 13.
    Abrikosov, A.A., Gor’kov, L.P., Dzyaloshinski, I.Y.: Quantum field theoretical methods in statistical physics, 2nd edn. Pergamon Press (1965)Google Scholar
  14. 14.
    Ginzburg, V.L.: The problem of high-temperature superconductivity. Ann. Rev. Mater. Sci. 2, 663 (1972)ADSCrossRefGoogle Scholar
  15. 15.
    Izyumov, Y.A.: Spin-fluctuation mechanism of high-Tc superconductivity and order-parameter symmetry. Phys. Uspekhi 42, 215 (1999)CrossRefGoogle Scholar
  16. 16.
    Alexandrov, A.S.: Theory of high temperature superconductivity in cuprates and other doped polar insulators. J. Supercond. Nov. Magn. 1389 (2012)Google Scholar
  17. 17.
    Shannon, D.R., Fischer, R.: Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B73, 235111 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Drechsler, S.L., Rosner, H., et al.: New insight into the physics of iron pnictides from optical and penetration depth data. arXiv:0904.0827
  19. 19.
    Gervais, F.: Anisotropic screening of oxygen polarizabilities: a scenario to understand superconductivity in oxides. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 8, 71 (1991)CrossRefGoogle Scholar
  20. 20.
    Weger, M., Pitaevskii, L.P., Peter, M.: Primary role of the oxygen polarizability in high-temperature superconducitify. J. Low Temper. Phys. 107, 533 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    Weger, M.: The primary role of ionic polarizability in exotic superconductivity. Acta Phys. Pol. A 87, 723 (1995)CrossRefGoogle Scholar
  22. 22.
    Rao, C.N.R., Ramasesha, S., et al.: Dominant role of the cu-o charge-transfer energy, electronic polarizability and associated factors in the superconductivity of cuprates. Solid State Commun. 77, 709 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    Sawatzky, G.A., et al.: Heavy-anion solvation of polarity fluctuations in pnictides. EPL 86, 17006 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Berciu, M., Elfimov, I., Sawatzky, G.A.: Electronic polarons and bipolarons in iron-based superconductors: the role of anions. Phys. Rev. 214507, B79 (2009)Google Scholar
  25. 25.
    Pei, S., et al.: Structural phase diagram of the Ba 1-x K x BiO 3 system. Phys. Rev. B41, 4126 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    Batlogg, B., et al.: Isotope effect in the high-Tc superconductors Ba2YCu3O7 and Ba2EuCu3O7. Phys. Rev. Lett. 58, 2333 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    Bussmann-Holder, A., Keller, H.: Isotope and multiband effects in layered superconductors. J. Phys Condens. Matter. 24, 233201 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Khasanov, R., et al.: Oxygen isotope effects on the superconducting transition and magnetic states within the phase diagram of Y 1 −x Pr x Ba 2 Cu 3 O 7 −δ. Phys. Rev. Lett. 101, 077001 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Pereiro, J., et al.: Insights from the study of high-temperature interface superconductivity. Philos. Ttrans. Royal Soc. A Math. Phys. Eng. Sci. 370, 4890 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, Q.Y., et al.: Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett 037402, 29 (2012)Google Scholar
  31. 31.
    Jiang-Feng, G., et al.: Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285 (2015)ADSGoogle Scholar
  32. 32.
    Song, Y.J., et al.: Superconducting properties of a stoichiometric FeSe compound and two anomalous features in the normal state. J. Korean Phys. Soc. 59, 312 (2011)CrossRefGoogle Scholar
  33. 33.
    Zhang, S., et al.: The role of SrTiO3 phonon penetrating into thin FeSe films in the enhancement of superconductivity arXiv:x1605-0694[V] (2016)
  34. 34.
    Mallett, B.P., et al.: Dielectric versus magnetic pairing mechanisms in high-temperature cuprate superconductors investigated using Raman scattering. Phys. Rev. Lett. 111, 237001 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Racah Institute of physicsHebrew UniversityJerusalemIsrael

Personalised recommendations