Advertisement

Dielectric Property Conduction Mechanism and Thermal Analysis of Cu 1 . 0 9 Ni 0 . 9 1 (HSeO3)2Cl2⋅4H2O Compound

  • I. Hentech
  • A. Kabadou
  • A. Ben Salah
  • M. Loukil
  • L. Bessais
Original Paper
  • 113 Downloads

Abstract

The Cu1.09Ni0.91(HSeO3)2Cl2⋅4H2O (noted CuNiSe) compound was prepared from an aqueous solution reaction and crystallizes in the orthorhombic Pnma space group. It was analyzed by single-crystal X-ray diffraction and the X-ray powder diffraction to confirm the purity of the synthesized compound. The structure of this compound consists by a three-dimensional framework structure, constructed by layers parallel to the (010) plane formed by copper/nickel octahedral and (HSeO\(_{3}^{\mathrm {-}})\) trigonal pyramids. The thermal analysis of the CuNiSe compound shows three endothermic peaks at 410, 433, and 473 K. The Raman spectra of CuNiSe have been recorded from 299 to 479 K. In addition, the dielectric evolution constant as a function of frequency and temperature revealed a ferroelectric–paraelectric phase transition about 433 K and superprotonic phase transition about 473 K. However, the conductivity evolution versus temperature confirmed the presence of these two types of phase transitions.

Keywords

X-ray diffraction Impedance spectroscopy Dielectric properties Superconductors Ferroelectricity 

References

  1. 1.
    Feng, M. L., Prosvirin, A. V., Mao, J. G., Dunbar, K. R.: Chem. Eur. J. 12, 8312–8323 (2006)CrossRefGoogle Scholar
  2. 2.
    Diefenbach, K., Lin, J., Cross, J. N., Dalal, N. S., Shatruk, M., Albrecht-Schmitt, T. E.: Inorg. Chem. 53, 71547159 (2014)CrossRefGoogle Scholar
  3. 3.
    Larrañaga, A., Mesa, J.L., Lezama, L., Arriortua, M.I., Rojo, T.: Spectroc. Acta A 72, 356–360 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Larrañaga, A., Mesa, J. L., Lezama, L., Pizarro, J.L., Arriortua, M.I., Rojo, T.: Mater. Res. Bull. 44, 1–5 (2009)CrossRefGoogle Scholar
  5. 5.
    Glass, M.E., Eds, A. M.: Oxford University Press. Oxford (1991)Google Scholar
  6. 6.
    Lim, A. R., Lim, K. Y.: Physica B 390, 91–95 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Pawłowski, A., Połomska, M., Hilczer, B., Szcześniak, L., Pietraszko, A.: J. Power Sources 173, 781–787 (2007)CrossRefGoogle Scholar
  8. 8.
    Cao, X. L., Kong, F., Hu, C. L., Xu, X., Mao, J. G.: Inorg. Chem. 53, 8816–8824 (2014)CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Mei, D., Xu, J., Wu, Y.: Solid State Chem. 232, 193–199 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Kretzschmar, J., Jordan, N., Brendler, E., Tsushima, S., Franzen, C., Foerstendorf, H., Stockmann, M., Heim, K., Brendler, V.: Dalton Trans. 44, 10508–10515 (2015)CrossRefGoogle Scholar
  11. 11.
    Chen, R. H., Chang, R.Y., Shern, S.C.: J. Phys. Chem. Solids 63, 2069–2077 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Louati, B., Gargouri, M., Guidara, K., Mhiri, T.: J. Phys. Chem. Solids 66, 762–765 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Li, Z., Yuan, L., Yi, Z., Liu, Y., Huang, Y.: Nano Energy 9, 229–236 (2014)CrossRefGoogle Scholar
  14. 14.
    Lai, Y., Han, C., Yan, C., Liu, F., Li, J., Liu, Y.: J. Alloys Compd. 557, 40–46 (2013)CrossRefGoogle Scholar
  15. 15.
    Litaiem, H., Dammak, M., Mhiri, T., Cousson, A.: J. Alloys Compd. 396, 34–39 (2005)CrossRefGoogle Scholar
  16. 16.
    Chang, S., Dai, Y., Kang, B., Han, W., Chen, D.: Solid State Commun. 149, 1180–1183 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Qian, C., Kong, F., Mao, J.G.: J. Solid State Chem. 238, 1–8 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Kovrugin, V. M., Colmont, M., Siidra, O. I., Krivovichev, S. V., Mentré, O.: Cryst. Growth Des. 16, 3113–3123 (2016)CrossRefGoogle Scholar
  19. 19.
    Hentech, I., Zehani, K., Kabadou, A., Ben Salah, A., Loukil, M., Bessais, L.: J. Mol. Struct. 1118, 259–266 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Verma, V. P.: Thermochimica. Acta 327, 63–102 (1999)CrossRefGoogle Scholar
  21. 21.
    Hiltunen, L., Leskela, M., Niinisto, L., Tammenmaa, M.: Acta Chem. Scand. A 39, 809 (1985)CrossRefGoogle Scholar
  22. 22.
    Micka, Z., Cermak, M., Niznansky, D.: Collect Czech. Chem. Commun. 55, 2441 (1990)CrossRefGoogle Scholar
  23. 23.
    Valkonen, J.: J. Solid State Chem.s 65, 363 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    Lee, D. W., Ok, K. M.: Inorg. Chem. 52, 10080–10086 (2013)CrossRefGoogle Scholar
  25. 25.
    Kovrugin, V.M., Krivovichev, S.V., Mentre, O., Colmont, M.: Z. Kristallogr. 230, 573–577 (2015)Google Scholar
  26. 26.
    Belgaroui, H., Loukil, M., Kabadou, A., Khemakhem, H., Ben Salah, A.: J. Chem. Crystallogr. 43, 352–359 (2013)CrossRefGoogle Scholar
  27. 27.
    Jaouadia, K., Zouari, N., Mhiri, T., Giorgi, M.: Physics Procedia 2, 1185–1194 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Sheldrick, G. M.: SHELXL97. Program for the Refinement of Crystal Structures. University of Gottingen, Germany (1997)Google Scholar
  29. 29.
    Farrugia, L. J.: J. Appl. Crystallogr. 32, 837 (1999)CrossRefGoogle Scholar
  30. 30.
    Young, R. A.: The Rietveld method. Oxford University Press, New York (1993)Google Scholar
  31. 31.
    Ktari, L., Abdelhedi, M., Bouhlel, N., Dammak, M., Cousson, A.: Mater. Res. Bull. 44, 1792–1796 (2009)CrossRefGoogle Scholar
  32. 32.
    Djemel, M., Abdelhedi, M., Ktari, L., Dammak, M.: J. Mol. Struct. 1047, 15–21 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Moreau, J. M., Michel, C., Gerson, R., James, W.J.: J. Phys. Chem. Solids 32, 1315–1320 (1971)ADSCrossRefGoogle Scholar
  34. 34.
    Khelifi, H., Zouari, I., Habouti, S., Abdelmoula, N., Mezzane, D., Khemakhem, H., Es-Souni, M.: J. Alloys Compd. 638, 50–54 (2015)CrossRefGoogle Scholar
  35. 35.
    Ratheesh, R., Suresh, G., Bushiri, M.J., Nayar, V.U.: Spectroc. Acta A 52, 1313–1314 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    Ross Macdonald, J.: J. Ann. Biomed. Eng. 20, 289 (1992)CrossRefGoogle Scholar
  37. 37.
    Hannachi, N., Guidara, K., Bulou, A., Hlel, F.: J. Mater. Res. Bull. 45, 1754 (2010)CrossRefGoogle Scholar
  38. 38.
    Karaa, N., Hamdi, B., Ben Salah, A., Zouari, R.: J. Mol. Struct. 1013, 168 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Hamdi, M., Chrif, B., Lafond, A., Louati, B., Guillot-Deudon, C., Hlel, F.: J. Alloys Compd. 643, 129–136 (2015)CrossRefGoogle Scholar
  40. 40.
    Smari, M., Khirouni, H., Rahmouni, N., Elghoul, I., Walha, E., Dhahri, K.: J. RSC Adv. 5, 2177–2184 (2015)CrossRefGoogle Scholar
  41. 41.
    Rahmouni, H., Smari, M., Cherif, B., Dhahri, E., Khirouni, K.: Dalton Trans. 44, 10457–10466 (2015)CrossRefGoogle Scholar
  42. 42.
    Grimnes, S.O., Martinsen, G.: IEEE Eng. Med. Biol. Soc. 52, 132–135 (2005)CrossRefGoogle Scholar
  43. 43.
    Bauerele, J. E., Hrizo, J.: J. Phys. Chem. Solids 30, 565 (1969)ADSCrossRefGoogle Scholar
  44. 44.
    Wagh, A., Raviprakash, Y., Kamath, S. D.: Trans. Nonferrous Met. Soc. China 25, 2637–2645 (2015)CrossRefGoogle Scholar
  45. 45.
    Jonscher, A. K.: Nature 267, 673 (1977)ADSCrossRefGoogle Scholar
  46. 46.
    Salman, F.: Glass Phys. Chem. 39, 150–154 (2013)CrossRefGoogle Scholar
  47. 47.
    Ben Rhaiem, A., Zouari, N., Guidara, K., Gargouri, M., Daoud, A.: J. Alloys Compd. 387, 1 (2005)CrossRefGoogle Scholar
  48. 48.
    Uchino, K., Nomura, S.: Ferroelectr. Lett. Sec. 44, 55–61 (1982)CrossRefGoogle Scholar
  49. 49.
    Viehland, D., Wuttig, M., Cross, L. E.: Ferroelectrics 120, 71–77 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire des Sciences des Matériaux et de l’EnvironnementFaculté des Sciences de SfaxSfaxTunisia
  2. 2.CMTR, ICMPE, UMR7182, CNRSUniversité Paris Est CréteilThiaisFrance

Personalised recommendations