Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 4, pp 1089–1095 | Cite as

The Effect of Fe Diffusion on Some Physical and Superconducting Properties of MgB2

  • Asaf Tolga Ulgen
  • Ibrahim Belenli
Original Paper


The iron (Fe) diffusion in superconducting MgB2 bulk samples has been studied over the temperature range of 650–900°C for 1 h. Fe coating on bulk polycrstalline superconducting MgB2 samples was performed in two ways, i.e., on pressed pellets without sintering (set2) and on pressed and sintered pellets (set1). For both sets, a 50 μ m thick Fe layer was coated on MgB2 by evaporation in vacuum. Effects of Fe diffusion on the crystal structure and superconducting properties of MgB2 have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and resistivity measurements. Fe diffusion coefficients were determined from lattice parameter c and room temperature resistivity values. The temperature dependence of the Fe diffusion coefficient in this temperature range is described by the Arrhenius relation. It has been found that the Fe diffusion coefficient increases with increasing sintering temperature, as expected. The plausible explanations for the observed improvement in microstructure and superconducting properties of the samples due to Fe diffusion are discussed.


MgB2 Fe diffusion Diffusion coefficient and activation energy 



This work is supported by the Scientific and Technological Research Council of Turkey, (Project no: 113F080) and also in part by Ministry of Development under Grant 2010K120520.


  1. 1.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature 410(6824), 63–64 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Akdogan, M., Yetis, H., Gajda, D., Karaboga, F., Ulgen, A.T., Demirtürk, E., Belenli, I.: J. Alloys Compd. 649, 1007–1010 (2015)CrossRefGoogle Scholar
  3. 3.
    Safran, S., Kiliçarslan, E., Kiliç, A., Gencer, A.: Cryogenics 63, 133–137 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Novosel, N., Pajic, D., Skoko, Z., Mustapic, M., Babic, E., Zadro, K., Horvat, J.: Phys. Procedia 36, 1498–1503 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Ke, C., Cheng, C.H., Yang, Y., Zhang, Y., Wang, W.T., Zhao, Y.: Phys. Procedia 27, 40–43 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Jin, S., Mavoori, H., Bower, C., Van Dover, R.B.: Nature 411(6837), 563–565 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Dzhafrov, T.D.: Physica Status Solidi (A) 158(2), 335–358 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Tenya, K., Miyajima, H., Otani, Y., Ishikawa, Y., Yoshizawa, S.: J. Appl. Phys. 77(6), 2634–2636 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Dzhafarov, T.D., Altunbas, M., Varilci, A., Cevik, U., Kopya, A.I.: Mater. Lett. 26(6), 305–311 (1996)CrossRefGoogle Scholar
  10. 10.
    Akdogan, M., Terzioglu, C., Varilci, A., Belenli, I.: Phys. B Condens. Matter 405(18), 4010–4019 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Terzioglu, C., Ozturk, O., Belenli, I.: J. Alloys Compd. 471(1), 142–146 (2009)CrossRefGoogle Scholar
  12. 12.
    Altin, S., Aksan, M.A., Yakinci, M.E.: J. Phys. Chem. Solids 72(9), 1070–1076 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Saritekin, N.K., Dogruer, M., Yildirim, G., Varilci, A., Yucel, E., Terzioglu, C.: J. Mater. Sci. Mater. Electron. 25(7), 3127–3136 (2014)CrossRefGoogle Scholar
  14. 14.
    Dogruer, M., Zalaoglu, Y., Gorur, O., Ozturk, O., Yildirim, G., Varilci, A., Terzioglu, C.: J. Mater. Sci. Mater. Electron. 24(2), 776–783 (2013)CrossRefGoogle Scholar
  15. 15.
    Lim, Y.J., Park, S.C., Chung, J.K., Lee, T.K., Song, K.J., Kim, C.J.: Physica C: Superconductivity 470(20), 1442–1445 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Hur, J.M., Togano, K., Matsumoto, A., Kumakura, H., Wada, H., Kimura, K.: Supercond. Sci. Technol. 21(3), 032001 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Zhou, S., Dou, S.: Solid State Sci. 12(1), 105–110 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Kühberger, M., Gritzner, G.: Physica C: Superconductivity 370(1), 39–43 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Singh, K.P., Awana, V.P.S., Balamurugan, S., Shahabuddin, M., Singh, H.K., Husain, M., Kishan, H., Bauminger, E.R., Felner, I.: J. Supercond. Nov. Magn. 21(1), 39–44 (2008)CrossRefGoogle Scholar
  20. 20.
    Dogruer, M., Yildirim, G., Yucel, E., Terzioglu, C.: J. Mater. Sci. Mater. Electron. 23(11), 1965–1970 (2012)CrossRefGoogle Scholar
  21. 21.
    Patterson, A.L.: Phys. Rev. 56(10), 978 (1939)ADSCrossRefGoogle Scholar
  22. 22.
    Heitjans, P., Karger, J.: Diffusion in Condensed Matter. Springer, Berlin (2005)CrossRefGoogle Scholar
  23. 23.
    Grathwohl, P.: Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Kluwer Academic, Dordrecht (1998)CrossRefGoogle Scholar
  24. 24.
    Abdullaev, G.B., Dzhafarov, T.D.: Atomic Diffusion in Semiconductor Structures. Harwood, New York (1987)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and ScienceAbant Izzet Baysal UniversityBoluTurkey

Personalised recommendations