Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 2, pp 425–430 | Cite as

Monte Carlo Investigation of Magnetization in Small Ferromagnetic Heisenberg Nanoparticles

  • A. Razouk
  • M. Sahlaoui
  • S. Eddahri
  • E. Agouriane
  • M. Sajieddine
Original Paper


Using the classical Heisenberg model and Monte Carlo simulations in the canonical ensemble, the effect of form, finite-size, and surface roughness on magnetization is investigated for ferromagnetic nanoparticle with uniaxial anisotropy and different nanoparticle shapes. In this work, cubical and spherical nanoparticles are considered; we have considered a simple nanoparticle where each site is occupied by a classical Heisenberg spin. Our numerical results show that the nanoparticle size and surface roughness have an impact and a considerable influence on the magnetic properties of these nanoparticles. But the influence of nanoparticle shapes is less significant when comparing magnetic behavior for cubical and spherical forms of the particle in a smooth or rough surface.


Monte Carlo simulation Heisenberg model Nanoparticles Finite-size effects Surface effects Magnetization 



Results obtained in this paper were computed on the magrid virtual organization of the Moroccan Grid Infrastructure ( We thank the CNRST/MaGrid providing the technical support, computing and storage facilities.


  1. 1.
    Georgia, C.: Papaefthymiou. Nano Today 4, 438 (2009)CrossRefGoogle Scholar
  2. 2.
    Skomski, R.: J. Phys. Condens. Matter 15, R841 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Dormann, J.L., Fiopranni, D., Tronc, E.: Adv. Chem. Phys. XCVIII, 283 (1997)Google Scholar
  4. 4.
    Tasaki, A., Tomiyana, S., Iida, S.: J. Appl. Phys. 4, 707 (1965)CrossRefGoogle Scholar
  5. 5.
    Hayashi, C., Vac, J.: Sci. Technol. A5, 1375 (1987)ADSGoogle Scholar
  6. 6.
    Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Phys. Rev. Lett. 61, 2472 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W.: Phys. Rev. B 39, 4828 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Watts, M.P., Victoria S., Coker, S., Parry, A., Pattrick, R.A.D., Thomas, R.A.P., Kalin, R., Lloyd, J.R.: Appl. Geochem. 54, 27 (2015)CrossRefGoogle Scholar
  9. 9.
    Lu, Y., Dong, L., Zhang, L.-C., Su, Y.-D., Yu, S.-H.: Nano Today 7, 297 (2012)CrossRefGoogle Scholar
  10. 10.
    Wu, Z., Huang, Z., Yin, G., Wang, L., Gao, F.: J. Colloid Interface Sci. 466, 1 (2016)CrossRefGoogle Scholar
  11. 11.
    Berry, C.C., Curtis, A.S.G.: J. Phys. D: Appl. Phys. 36, R198 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Jun, Y.-W., Seo, J.-W., Cheon, J.: Acc. Chem. Res. 41, 179 (2008)CrossRefGoogle Scholar
  13. 13.
    McCathy, J.R., Weissleder, R.: Adv. Drug Deliv. Rev. 60, 1241 (2008)CrossRefGoogle Scholar
  14. 14.
    Roduner, E.: Chem. Soc. Rev. 35, 583 (2006)CrossRefGoogle Scholar
  15. 15.
    Jamet, M., Wernsdorfer, W., Thirion, C., Dupuis, V., Mélinon, P., Pérez, A., Mailly, D.: Phys. Rev. B 69, 024401 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Eastham, D.A., Kirkman, I.W.: J. Phys.Condens. Matter 1(12), L525 (2000)CrossRefGoogle Scholar
  17. 17.
    Dorfbauer, F., Evans, R., Kirschner, M., Chubykalo-Fesenko, O., Chantrell, R., Schrefl, T.: J. Magn. Magn. Mater. 316e791 (2007)Google Scholar
  18. 18.
    Kachkachi, H., Schmool, D.S.: Eur. J. Phys. B56, 27 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Evans, R.F.L., Chantrell, R.W., Chubykalo-Fesenko, O.: MRS Bull. 38(11), 909 (2013)CrossRefGoogle Scholar
  20. 20.
    Hoffmann, K.H., Schreiber, M.: Computational Physics, Selected Methods Simple, Simple Exercises, Serious Applications, p. 166 (1996)MATHGoogle Scholar
  21. 21.
    Fiig, T., Andersen, N.H., Lindgård, P.-A., Berlin, J., Mouritsen, O.G.: Phys. Rev. B 54, 556 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Razouk, A., Sahlaoui, M., Sajieddine, M.: Appl. Surf. Sci. 255, 8695 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Talbot, E., Berche, P.E., Ledue, D.: J. Magn. Magn. Mater. 320, 2814 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Burns, G.: Solid State Physics. Academic Press, New York (1985)Google Scholar
  25. 25.
    Heisenberg, W.: Zur Theorie des Ferromagnetismus. Z. F. Phys. 49, 619 (1928)ADSCrossRefMATHGoogle Scholar
  26. 26.
    Veiller, L., Ledue, D., Teillet, J.: J. Appl. Phys. 87, 432 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    Yanes, R., Chubykalo-Fesenko, O., Evans, R.F.L., Chantrell, R.W.: J. Phys. D. Appl. Phys. 43, 474009 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Razouk, A., Sahlaoui, M., Sajieddine, M.: J. Supercond. Nov. Magn. 24, 2019 (2011)CrossRefGoogle Scholar
  29. 29.
    Ledue, D., Berche, P.E., Patte, R.: Physica B 348, 410 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  31. 31.
    Veiller, L., Ledue, D., Teillet, J.: J. Magn. Magn. Mater. 176, 89 (1991)Google Scholar
  32. 32.
    Hansen, P., Clausen, C., Much, B., Rosenkranz, M., Witter, K.: J. Appl. Phys. 66, 756 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    Razouk, A., Sahlaoui, M., Sajieddine, M., Agouriane, E.: Ferroelectrics 372(1) (2008)Google Scholar
  34. 34.
    Pianciola, B.N., Lima, E., Troiani, H.E., Nagamine, L.C.C.M., Cohen, R., Zysler, R.D.: J. Magn. Magn. Mater. 377, 44 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., Serna, C.J.: J. Phys. D Appl. Phys. 36, R182 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Razouk
    • 1
    • 2
  • M. Sahlaoui
    • 1
  • S. Eddahri
    • 1
  • E. Agouriane
    • 1
  • M. Sajieddine
    • 1
  1. 1.Material Physics Laboratory, Faculty of Sciences and TechnologySultan Moulay Slimane UniversityBeni MellalMorocco
  2. 2.Department of Physics, Polydisciplinary FacultySultan Moulay Slimane UniversityBeni MellalMorocco

Personalised recommendations