Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 1, pp 197–201 | Cite as

Effect of Heat Treatment on the Magnetic Properties of a CuMn Alloy

  • Sultan Cansel Cucu
  • Emine Aldırmaz
Original Paper


In this paper, we reported the effect of heat treatment on the magnetic properties of Cu 75.8-Mn 24.2 alloy (wt%) alloy. Magnetization measurements were performed by using a vibrating sample magnetometer (VSM) at 300 K temperature. Observations of the magnetization as a function of applied field and temperature were conducted between -10 and 10 T magnetic field ranges at constant temperature. Since the grain size is important in determining the magnetic properties of copper-based alloys, two different grain-sized samples were examined by using ac magnetic susceptibility measurements. The magnetic saturation and the coercivity values for the small-grained sample are found higher than those for the larger-grained sample. The magnetic saturation values at room temperature were found to be approximately 3.63 and 3.22 emu/g for large-grained and small-grained samples, respectively. Details of the morphological properties and chemical composition have also been examined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX), respectively. In addition, X-ray diffraction (XRD) observations were performed for the determination of the crystallography of phases.


Grain size Magnetic saturation Quenching Susceptibility 



This study was supported financially by the Research Centre of Amasya University (Project No: FMB-BAP 16-0174).


  1. 1.
    In: Torra, V. (ed.): Proceedings COMETT Course. University of Balears Islands, Palma de Mallorca (1989)Google Scholar
  2. 2.
    Funakubo, H.: Shape Memory Alloys. Gordon and Breach Science, New York (1987)Google Scholar
  3. 3.
    Saadat, S., Salichs, J., Noori, M., Hou, Z., Davoodi, H., Baron, I., Suzuki, Y., Masuda, A.: Smart Mater. Struct 11, 218–229 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    He, C., Du, Y., Chen, H.L., Liu, S., Xu, H., Ouyang, Y., Liu, Z.K.: J. Alloy. Compd 457, 233–238 (2008)CrossRefGoogle Scholar
  5. 5.
    Liu, G.D., Liu, Z.H., Dai, X.F., Yu, S.Y., Chen, J.L., Wu, G.H.: Sci. Techn. Advan. Mater 6, 772–777 (2005)CrossRefGoogle Scholar
  6. 6.
    Fujita, A., Fukamichi, K., Gejima, F., Kainuma, R., Ishida, K.: Appl. Phys. Lett 77, 3054–3056 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Wuttig, M., Li, J., Craciunescu, C.: Scr. Mater. 44, 2393–2397 (2001)CrossRefGoogle Scholar
  8. 8.
    Oikawa, K., Wulff, L., Iijima, T., Gejima, F., Ohmori, T., Fujita, A., Fukamichi, K., Kainuma, R., Ishida, K.: Appl. Phys. Lett 79, 3290–3292 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Heusler, F.: Verh. Dtsch. Phys. Ges. 12, 219 (1903)Google Scholar
  10. 10.
    Ullakko, K., Huang, J.K., Kantner, C., O’Handley, R.C., Kokorin, V.V.: Appl. Phys. Lett. 69(13), 1966–1968 (1996)Google Scholar
  11. 11.
    Tustison, R.W., Beck, P.A.: Solid State Commun. 21, 517–518 (1977)ADSCrossRefGoogle Scholar
  12. 12.
    Iqbal, J., Hasany, F., Ahmad, F.: J. Mater. Sci. Technol. 22, 779–784 (2006)Google Scholar
  13. 13.
    Eder, M., Hafner, J., Moroni, E.G.: Surf. Sci. 423, L244–L249 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Aldirmaz, E., Celik, H., Tekelioglu, A., Aksoy, I.: J. Optoelectron. Adv. Mater. 14, 809–813 (2012)Google Scholar
  15. 15.
    Karakaya, N., Aldirmaz, E.: Appl. Phys. A 122, 542–547 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Dagdelen, F., Gokhan, T., Aydogdu, A., Aydogdu, Y., Adigüzel, O.: Mater. Lett. 57, 1079–1085 (2003)CrossRefGoogle Scholar
  17. 17.
    Husain, S.W., Clapp, P.C.: J. Mater. Sci. 22, 509–516 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    Tsuda, H., Ito, T., Nakayama, Y.: Scr. Metall. 20, 1555–1559 (1986)CrossRefGoogle Scholar
  19. 19.
    Nishiyama, Z.: Academic, New York (1978)Google Scholar
  20. 20.
    Bischoff, A.J., Arabi-Hashemi, A., Ehrhardt, M., Lorenz, P., Zimmer, K., Mayr, S.G.: App. Phys. Lett. 108, 151901–1–151901-4 (2016)CrossRefGoogle Scholar
  21. 21.
    Jin, X., Marioni, M., Bono, D., Allen, S.M., O’Handley, R.C., Hsu, T.Y.: J. Appl. Phys. 91 (10), 8222–8224 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Kozubski, R., Soltys, J.: J. Mater. Sci. 18, 1689–1697 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    Kouvel, J.S.: J. Phys. Chem. Solids 21, 57–70 (1961)ADSCrossRefGoogle Scholar
  24. 24.
    Kayali, N., Zengin, R., Adguzel, O.: Metall. Mater. Trans. A 31A, 349–354 (2000)CrossRefGoogle Scholar
  25. 25.
    Porter, D.A., Easterling, K.E.: Pergamon, London (1989)Google Scholar
  26. 26.
    Mukhopadhyay, A.K., Shull, R.D., Beck, P.A., Less, J.: Common Metals 43, 69–82 (1975)CrossRefGoogle Scholar
  27. 27.
    Konoplyuk, S.M., Kokorin, V.V., Levchuk, Y.S., Kozlova, L.E.: Ukr. J. Phys. 53, 172–176 (2008)Google Scholar
  28. 28.
    Sasmaz, M., Bayri, A., Aydogdu, Y.: J. Supercond. Nov. Magn. 24, 757–762 (2011)CrossRefGoogle Scholar
  29. 29.
    Herzer, G.: Scr. Metall. Mater. 33, 1741–1756 (1995)CrossRefGoogle Scholar
  30. 30.
    Herzer, G.: IEEE Trans. Magn. 25(5), 3327–3329 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    Banerjee, A., Majumdar, A.K.: Phys. Rev. B 46, 8958–8973 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    Owen, J., Browne, M.E., Arp, V., Kip, A.F.: J. Phys. Chem. Solids 2, 85–99 (1957)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of SciencesAmasya UniversityAmasyaTurkey
  2. 2.Department of Physics, Science and Arts FacultyAmasya UniversityAmasyaTurkey

Personalised recommendations