Journal of Superconductivity and Novel Magnetism

, Volume 30, Issue 1, pp 171–177 | Cite as

Microwave Absorption Properties of Ba–M Hexaferrite with High Substitution Levels of Mg–Ti in X Band

  • M. Jazirehpour
  • M. H. Shams
Original Paper


BaFe12−x Mg0.5x Ti0.5x O 19 nanoparticles were synthesized by using a modified sol–gel method. In order to investigate electromagnetic (EM) wave absorption properties of Mg–Ti-substituted barium hexaferrite nanoparticles, composites including ferrite (filler) and acrylic resin (matrix) with a weight ratio of 70:30 (ferrite/resin) were prepared. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), alternative gradient force magnetometer (AGFM), and vector network analyzer (VNA) were used to investigate the morphological, structural, magnetic, and EM wave absorption characteristics of the samples. The XRD results indicated that by the modified sol–gel synthesis method, the substituted compounds were a single-phase hexagonal ferrite for x=0 to x=5. FE-SEM images showed that the particle sizes were almost in a range of 35–50 nm. With an increase in the substitution level from x=0 to x=5, the maximum magnetization and coercivity decreased from 53.2 emu/g and 4900 Oe to 8.6 emu/g and 50 Oe, respectively. The reflection loss patterns of the samples showed that EM wave absorption was improved with an increase in the substitution levels, and the effect of substitution level on the intensity of EM wave absorption was discussed. The best reflection loss value was −55 dB obtained by the sample with x=5 in the frequency of 10.8 GHz. The results indicated that the composites containing Mg–Ti-substituted barium hexaferrite nanoparticles with high substitution levels synthesized by the modified sol–gel process can be considered as suitable EM wave absorbers in X-band applications.


Sol–gel Electromagnetic Reflection loss Barium hexaferrite Magnetic 



The authors would like to acknowledge the financial support provided by the Electroceramics Research Center of MUT University. We also gratefully appreciate the assistance of Dr. O. Khani and Dr. Y. Zare in the course of conducting this research.


  1. 1.
    Jazirehpour, M., Ebrahimi, S. S.: J. Alloys Compd. 639, 280–288 (2015)CrossRefGoogle Scholar
  2. 2.
    Jazirehpour, M., Ebrahimi, S. S.: J. Alloys Compd. 638, 188–196 (2015)CrossRefGoogle Scholar
  3. 3.
    Narang, S. B., Kaur, P., Bahel, S., Singh, C.: J. Magn. Magn. Mater. 405, 17–21 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Baniasadi, A., Ghasemi, A., Nemati, A., Azami Ghadikolaei, M., Paimozd, E.: J. Alloys Compd. 583, 325–328 (2014)CrossRefGoogle Scholar
  5. 5.
    Jian, X., Chen, X., Zhou, Z., Li, G., Jiang, M., Xu, X., Lu, J., Li, Q., Wang, Y., Gou, J.: Phys. Chem. Chem. Phys. 17, 3024–3031 (2015)CrossRefGoogle Scholar
  6. 6.
    Wang, L., Huang, Y., Li, C., Chen, J., Sun, X.: Phys. Chem. Chem. Phys. 17, 2228–2234 (2015)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Zhang, S., Liu, X., Pei, Q., Qian, J., Zhuang, Q., Han, Z.: Macromolecules (2015)Google Scholar
  8. 8.
    Sharma, M., Singh, M. P., Srivastava, C., Madras, G., Bose, S.: ACS Appl. Mater. Interfaces 6, 21151–21160 (2014)CrossRefGoogle Scholar
  9. 9.
    Guo, C., Xia, F., Wang, Z., Zhang, L., Xi, L., Zuo, Y.: J. Alloys Compd. 631, 183–191 (2015)CrossRefGoogle Scholar
  10. 10.
    Lv, H., Ji, G., Wang, M., Shang, C., Zhang, H., Du, Y.: J. Alloys Compd. 615, 1037–1042 (2014)CrossRefGoogle Scholar
  11. 11.
    Huang, X., Zhang, J., Lai, M., Sang, T.: J. Alloys Compd. 627, 367–373 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, L., Yu, H., Ren, X., Xu, G.: J. Alloys Compd. 588, 212–216 (2014)CrossRefGoogle Scholar
  13. 13.
    Yuan, X., Cheng, L., Kong, L., Yin, X., Zhang, L.: J. Alloys Compd. 596, 132–139 (2014)CrossRefGoogle Scholar
  14. 14.
    Luo, H., Xiong, G., Chen, X., Li, Q., Ma, C., Li, D., Wu, X., Wan, Y.: J. Alloys Compd. 593, 7–15 (2014)CrossRefGoogle Scholar
  15. 15.
    Shen, X., Song, F., Yang, X., Wang, Z., Jing, M., Wang, Y.: J. Alloys Compd. 621, 146–153 (2015)CrossRefGoogle Scholar
  16. 16.
    Xu, F., Ma, L., Huo, Q., Gan, M., Tang, J.: J. Magn. Magn. Mater. 374, 311–316 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Alam, R. S., Moradi, M., Nikmanesh, H., Ventura, J., Rostami, M.: J. Magn. Magn. Mater. 402, 20–27 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Alam, R. S., Moradi, M., Rostami, M., Nikmanesh, H., Moayedi, R., Bai, Y.: J. Magn. Magn. Mater. 381, 1–9 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Asl, M.J.P, Ghasemi, A., Gordani, G.R.: J. Supercond. Nov. Magn. 29, 795–801 (2016)CrossRefGoogle Scholar
  20. 20.
    Jazirehpour, M., Shams, M., Khani, O.: J. Alloys Compd. 545, 32–40 (2012)CrossRefGoogle Scholar
  21. 21.
    Jamalian, M., Ghasemi, A.: J. Supercond. Nov. Magn. 28, 3293–3299 (2015)CrossRefGoogle Scholar
  22. 22.
    Meng, P., Xiong, K., Wang, L., Li, S., Cheng, Y., Xu, G.: J. Alloys Compd. 628, 75–80 (2015)CrossRefGoogle Scholar
  23. 23.
    Sözeri, H., Mehmedi, Z., Kavas, H., Baykal, A.: Ceram. Int. 41, 9602–9609 (2015)CrossRefGoogle Scholar
  24. 24.
    Shams, M. H., Salehi, S. M. A., Ghasemi, A.: Mater. Lett. 62, 1731–1733 (2008)CrossRefGoogle Scholar
  25. 25.
    Baniasadi, A., Ghasemi, A., Ghadikolaei, M.A., Nemati, A., Paimozd, E.: J. Mater. Sci. Mater. Electron. 27, 1901–1905 (2016)CrossRefGoogle Scholar
  26. 26.
    Jamalian, M., Ghasemi, A., Paimozd, E.: J. Electron. Mater. 43, 1076–1082 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Stepankova, H., Kohout, J., Simsa, Z.: J. Magn. Magn. Mater. 104, 411–412 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    Molaei, M., Rahimipour, M.: Mater. Chem. Phys. 167, 145–151 (2015)CrossRefGoogle Scholar
  29. 29.
    Mosleh, Z., Kameli, P., Poorbaferani, A., Ranjbar, M., Salamati, H.: J. Magn. Magn. Mater. 397, 101–107 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Jamalian, M.: J. Magn. Magn. Mater. 378, 217–220 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Electroceramics Research CenterMalek Ashtar University of TechnologyShahin ShahrIran

Personalised recommendations